
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No.5, 2013

59 | P a g e
www.ijacsa.thesai.org

DCaaS: Data Consistency as a Service for Managing

Data Uncertainty on the Clouds

Islam Elgedawy

Computer Engineering Department,

Middle East Technical University,

 Northern Cyprus Campus,

Guzelyurt, Mersin 10, Turkey.

Abstract—Ensuring data correctness over partitioned

distributed database systems is a classical problem. Classical

solutions proposed to solve this problem are mainly adopting

locking or blocking techniques. These techniques are not suitable

for cloud environments as they produce terrible response times;

due to the long latency and faultiness of wide area network

connections among cloud datacenters. One way to improve

performance is to restrict access of users-bases to specific

datacenters and avoid data sharing between datacenters.

However, conflicts might appear when data is replicated between

datacenters; nevertheless change propagation timeliness is not

guaranteed. Such problems created data uncertainty on cloud

environments. Managing data uncertainty is one of the main

obstacles for supporting global distributed transactions on the

clouds. To overcome this problem, this paper proposes an quota-

based approach for managing data uncertainty on the clouds that

guarantees global data correctness without global locking or

blocking. To decouple service developers from the hassles of

managing data uncertainty, we propose to use a new platform

service (i.e. Data Consistency as a Service (DCaaS)) to

encapsulate the proposed approach. DCaaS service also ensures

SaaS services cloud portability, as it works as a cloud adapter

between SaaS service instances. Experiments show that proposed

approach realized by the DCaaS service provides much better

response time when compared with classical locking and blocking
techniques.

Keywords—clouds; cloudlet; cloud adapter; data uncertainty;

DCaaS; SaaS; PaaS

I. INTRODUCTION

Clouds are the next-generation datacenters virtualized
through hypervisor technologies, where cloud-vendors can
dynamically provision their virtualized nodes on demand to
their customers according to the specified service level
agreements [3]. Cloud computing is the computing paradigm
that enables the whole solution stack (from hardware to
software) to be delivered as services over the internet. Such
services are classified into three basic classes: Software as a
service (SaaS), Platform as a Service (PaaS), and
Infrastructure as a Service (IaaS) [3]. SaaS services are
applications that customers need. PaaS services are services
needed to deploy and deliver SaaS services such as database
and middleware services. IaaS services are services needed to
specify the required virtualized computer infrastructure such
as disk and memory requirements.

Real-life cloud environments usually constituted from a
collection of datacenters connected via a Wide Area Network
(WAN). A datacenter is constituted from thousands of
machines connected via a LAN (i.e. local area network)
forming what is known as a cloudlet (i.e. a small cloud).
Latency in WANs is much bigger than latency in LANs. This
difference in latency distribution inside cloud environments
created a non-homogenous timing model for the cloud. For
example, latency between two machines inside a datacenter is
in the range of 100 msec; while latency between two machines
connected via WAN is in the range of 1000 msec (i.e. when
machines are in different continents). Such latency difference
makes the WAN connections as the main bottleneck in cloud
environments. Hence, existing classical concurrency control
and transaction management approaches (such as ones
discussed in [7] [9]) are not suitable for cloud environments,
as they opt to accommodate the slowest latency inside the
cloud environment, which badly hurts services performance.
To overcome this problem, many approaches have appeared
[4][5][6][8][20][22][24] proposing a restricted version of
cloud computing, in which requests of users with similar
latency values (known as a user-base) are directed to the
closest datacenter such that no data sharing between
datacenters is allowed. However, data could be replicated later
between datacenters storages as a background process to keep
databases eventually synchronized and to create multiple
copies of the database for backup purposes [12]. We define
such computing model as “cloudlet computing”. A cloudlet is
a small cloud, so it is similar to cloud in terms of offered
services; however it differs in restricting its physical scope
into only one datacenter. Cloudlet computing only supports
what is known as a mini-transactions [20], which are
transactions restricted to a single datacenter to guarantee good
performance [4][5][6][8][20][24]. On the other hand, cloudlet
computing cannot support global transactions (such as in flight
reservation and banking), as global data correctness is not
guaranteed due to lack of global control. In other words,
cloudlet computing paradigm ensures local correctness of the
data within the cloudlet but cannot ensure global correctness
of the data (among all cloudlets), as conflicts might appear
when data is replicated between cloudlets due to lack of global
control. Furthermore, there is no guarantee for change
propagation timeliness as updates propagation depends on
many different factors such WAN latency and replication
schedule of cloud vendor. Hence, data uncertainty becomes a
very important characteristic on the clouds and must be

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No.5, 2013

60 | P a g e
www.ijacsa.thesai.org

managed by applications as cloud data stores management
systems cannot overcome such problem [13]. However,
managing data uncertainty in service code is not an easy task,
as it requires services to be designed in a different way to deal
with missing or multiple values of data objects. Actually,
managing data uncertainty is one of the main obstacles for
writing transactional applications on the clouds [3]. We argue
that service developers should be totally decoupled from
managing data uncertainty in their code to improve service
maintainability, portability and reusability, nevertheless
reducing service development efforts and time. We argue that
we need to create a new breed of database management
services (such as transaction management, data access, and
data replication) that take into consideration the data
uncertainty resulting from the cloud non-homogenous timing
model. Unlike the classical centralized database management
systems, such new breed of database management services
must be totally decoupled and must ensure good performance,
high availability, and high scalability of services as well as
global data correctness, which enables us to easily support
global distributed transactions. This paper proposes our first
initiative towards achieving these goals. Hence we summarize
the contributions of the paper as follows:

1) First, we propose to use a new middleware platform

service for handling data consistency and data uncertainty

issues (i.e. Data Consistency as a Service (DCaaS)) on behalf

of service developers, hence service code will be totally

decoupled from data uncertainty management code leading to

faster maintainable SaaS service development. SaaS

developers will not write SQL statements in their SaaS service

code to access data; instead they will write invocations for the

DCaaS service APIs operations to access their data.

Furthermore, DCaaS service ensures service cloud

portability, as it also decouples SaaS services from directly

accessing PaaS services operations; hence no SaaS service

code will change if the cloud vendor is changed. The only

required change is in the interface between the DCaaS and the

PaaS services, which could be handled easily using service

adapters [28].

2) Second, we propose to use a multi-level data

consistency approach for handling SaaS services data objects

to enhance service performance. As maintaining strong data

consistency is a costly process [15], we argue that it should be

only used for objects that their correctness is crucial for

services correctness, while for less important data we could

go for weaker consistency notions such as eventual or session

consistency [23]. Service developers will dynamically define

their consistency requirements according to their business

logic in a form of a Data Consistency Plan (DCP), and then

submit such plan to the DCaaS service, which will make sure

such consistency requirements are fulfilled during data access

operations. Currently, we support three levels of data

consistency strong, eventual, and session that service

providers choose from to define the required DCP; more

details are given in Section 4.

3) Third, we propose a quota-based approach for

ensuring global data correctness among cloudlets. The

proposed approach applies inventory management principles

to ensure fulfillment of users requests, that it requires service

providers to divide crucial objects capacity among cloudlets

by specifying a quota for each cloudlet such that DCaaS

services makes sure no cloudlet user request consume more

than the allocated quota. Hence, when data is replicated

between cloudlets no conflicts could arise. When a given

DCaaS service instance requires more than assigned quota

due to high volume of requests, it could contact other DCaaS

instances to borrow extra quota. If quota borrowing process

fails the request is rejected. To achieve such goals, we provide

different protocols for quota borrowing, object stabilization,

and DCaaS fault tolerance to ensure protocols liveness and

safety properties, more details are given in Sections 4, 5 and

6.
Experiments show that proposed DCaaS service adopting

the proposed data consistency approach provides much better
response time when compared with classical locking and
blocking techniques. The rest of the paper is organized as
follows. Section 2 provides a brief background and discusses
related work. Section 3 provides solution model and
assumptions. Section 4 introduces the quota-based approach
proposed for ensuring data global correctness. Section 5
discusses different management issues of data consistency
plan and proposes the adopted object stabilization protocol.
Section 6 discusses various design aspects of the proposed
DCaaS service such as required APIs and DCaaS recovery.
Section 7 provides some basic comparative simulation
experiments for proposed approaches, and finally Section 8
concludes the paper. This paper is the extended version of the
paper proposed in [27].

II. BACKGROUND AND RELATED WORK

Ensuring data consistency over partitioned distributed
database system is a classical problem that attracted many
researchers. Data replication is one of the methods used for
sharing data between database instances; in which multiple
copies of the shared data are stored with the SaaS service
instances [7][9][12]. Such copies (replicas) are frequently
updated by broadcasting changes to all instances. However,
this is not an easy step, as correctness of the data must be
maintained. One important aspect of replicated data
correctness is mutual consistency, in which all copies of the
same logical data must agree on exactly one current value for
the data items without violating the logic of the executed
transaction. Furthermore, the problem becomes more
complicated, when a failure occurs (e.g. due to network failure
or server failure) as the correctness of the shared replicated
data could be compromised via uncoordinated updates.
Classical solutions proposed to solve this problem are mainly
adopting locking or blocking techniques to ensure data
correctness. Good surveys for such approaches could be found
in [7] [9]. Such classical approaches adopt a pessimistic
strategy that assumes conflicts occur frequently. Hence, they
suspend all other instances from working (via locking or
blocking) when a given instance needs to do some updates for
the shared data. These techniques provide very bad

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No.5, 2013

61 | P a g e
www.ijacsa.thesai.org

performance when applied on cloud environments [5] [6] [11]
[15] [22], as they tend to create considerably high overhead
over the slow faulty WAN connections due to exchanged
synchronization messages and performed reconciliation
transactions, which of course badly hurts services availability
and customers’ response times. CAP theorem [11] clearly
states that there is a tradeoff between Data consistency,
service availability and partition tolerance. This means asking
for high availability and consistent data would imply that we
cannot tolerate network partitioning. In cloud environments,
data is partitioned over multiple machines to provide high
scalability, and as networks between these machines could
simply fail, this means partitioning (data and networks) is
crucial for cloud environments. Hence, cloud vendors opt to
choose between availability and consistency. Recent
approaches (such as Google's BigTable [4], Yahoo PUNTS[5],
Amazon's Dynamo [8], G-store [6] and Apache Cassandra
[24]) proposed to go for weaker forms of consistency on the
clouds such as eventual consistency [20], in which they trade
consistency for availability, that all service instances are
allowed to work normally without any suspension and process
their transactions locally. This is known as the optimistic
strategy; as it assumes conflict occur rarely. However, when a
conflict is detected undo transactions and/or compensating
transactions should be performed by the services, also in some
cases some data versions could be lost. Going for weaker
forms of consistency requires developers to design programs
in new ways that can tolerate such data inconsistencies
according to business logic. This could be done via writing
correcting transactions or using data time stamps to decide
between multiple versions of the data as in [21]. Solution
proposed in this paper compromise between the optimistic and
pessimistic approaches such that it maintains local correctness
within a cloudlet using pessimistic approaches and ensures
data global correctness between cloudlets by using a quota-
based approach that adopts lazy replication approaches as in
optimistic approaches to ensure availability and scalability.

III. SOLUTION MODEL AND ASSUMPTIONS

In this paper, we assume cloud vendors provide a PaaS
service for accessing the SaaS database (that is a tenant in the
physical cloud database). Objects of the SaaS database are
stored as simple key-value data format. SaaS database could
be partitioned among different cloudlets; hence we require
cloudlets PaaS services to provide a lazy replication
mechanism (as a background process) to replicate their data
changes. A PaaS service could be accessed by one or more
DCaaS services simultaneously; hence we require a PaaS
service to provide a local concurrency protocol mechanism
between DCaaS instances accessing it. Each SaaS instance
handles a given user-base of SaaS customers. Each cloudlet
could create multiple SaaS, DCaaS, and PaaS service
instances to increase availability, throughput, and enhance
response times, as depicted in Figure 1. Hence we require each
DCaaS instance to keep reference to other DCaaS instances
created inside and outside its cloudlet. We model DCaaS
service instances as peers and they can communicate with
each other in a P2P manner. We require all the
communications between SaaS, DCaaS, PaaS services to be
done in an asynchronous mode, as the clouds timing model is

non-homogeneous. Hence, fast services will not wait for slow
services responses and could process other requests. We
require a state machine to implementation be installed at each
DCaaS instance to realize proposed protocols, the exchanged
messages between state-machines are calls for DCaaS API
operations.

Fig. 1. aS, DCaaS, PaaS single cloudlet deployment

IV. QOUTA-BASED DATA CONSISTENCY APPROACH

Work in [13] clearly indicates that data uncertainty must
be managed in distributed transactions in order to meet real
life requirements. Management of data uncertainty is not a
new problem. Actually, in business, handling data uncertainty
is a fact of life and many solutions have been adopted by
businesses for managing such uncertainty such as reserved
inventory, allocations against credit lines, and budgeting. We
propose to handle uncertainty for data objects using similar
business strategies. For example, inventory management is
primarily about specifying the shape and percentage of
stocked goods required at different locations within a facility
or within many locations of a supply network. Inventory
management is the process of efficiently overseeing the
constant flow of units into and out of an existing inventory.
This process usually involves controlling the transfer in of
units in order to prevent the inventory from becoming too
high, or dwindling to levels that could put the operation of the
company into jeopardy. Hence, we argue we could use the
same process for managing transactions accessing objects on
distributed data stores such that the data store act as
inventories, the objects act as the goods, and the users’
requests act as the consuming demand. For example, an airline
reservation service could have its database partitioned among
many cloudlets (i.e. inventories). Instead of globally locking
flight data object whenever a booking operation is made, we
will allocate a quota of seats (i.e. goods) for each cloudlet
such that each cloudlet locally handles its incoming users
requests (i.e. demand) and its DCaaS service instances make
sure it does not exceed the allocated quota. When such
condition is fulfilled, no data conflicts (i.e. different bookings
for the same seat) could appear when replication occurs
between cloudlets. A cloudlet ensures the correctness of its
transactions using its own concurrency control approach using
any locking or blocking technique. This approach will not hurt
performance as latency inside cloudlets is small (i.e. within
the range of 100ms), which still provide acceptable response

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No.5, 2013

62 | P a g e
www.ijacsa.thesai.org

time [20]. Another example, in banking, if we need to access
a given account, instead of locking the account object, we
could allocate a budget for each cloudlet to manage its
incoming withdrawal and deposit requests.

To ensure global data consistency, we require each SaaS
service provider to define a capacity quota for its strong
consistency data objects for each cloudlet; then provides such
information to the corresponding DCaaS service instances via
a DCP. DCaaS makes sure that none of incoming users
requests to consume more than the allocated objects quotas. In
case of one request requires capacity more than allocated
quota, the involved DCaaS service instance tries to borrow
quota from other DCaaS instances. In case of success, it
accepts the request and processes it, otherwise it rejects it. A
DCaaS service instance could borrow from instances located
in its cloudlet, or from instances in other cloudlets. As
borrowing from outside cloudlets requires communications via
WAN connection, hence only requests requiring extra quota
will be affected. We argue that quota should be distributed
between cloudlets in a manner that minimizes the borrowing
rate, that quotas should be proportional to the volume of the
cloudlets users-bases such that cloudlet with bigger volume
should take a bigger quota. We perform the quota borrowing
process adopting a simple protocol depicted in Figure 2.

Fig. 2. Stages of Quota Borrowing Protocol

The quota borrowing protocol works as follows. The
DCaaS service instance requesting the quota sends its request
first to DCaaS instances in its cloudlet with the required of
borrow amount. Each DCaaS service instance received the
quota borrow request replies back with the quota amount it
can transfer. This amount ranges from zero to the required
amount. The leader collects all quota transfer responses and
acknowledges other DCaaS instances with the amounts it will
take. Once DCaaS instances receive such acknowledgment it
updates its share of quota with the acknowledged amount.
Such protocol requires a state machine to be installed at each
DCaaS instance, exchanged messages between state-machines
are calls for DCaaS API operations; more details about DCaaS
APIs will be given in Section 6. The easiest quota distribution
strategy is to equally divide the object capacity among
cloudlets. However, the proper quota distribution strategy
should be based on thorough demand forecast analysis. In case
a service provider makes a mistake in allocating the quotas,
DCaaS service instances will automatically redistribute the
quotas among themselves when requests arrives via the quota
borrowing process. The price of wrong quota allocation is
longer response times due to the slow quota borrowing
process (if WAN connections are used). However, once quota

borrowing process is finished, response times dramatically
improve, as all incoming requests will be handled locally
inside the cloudlet, as shown in Section 7.

V. SERVICE DCP MANAGEMENT

Our solution divides the responsibility of managing data
uncertainty between the service provider and the DCaaS
service. It decouples the definition of the data management
strategy from its implementation. The proposed solution
requires SaaS service providers to specify the required
strategy, while the DCaaS service work on implementing and
executing this strategy. A SaaS service provider specifies its
strategy by defining a Data Consistency Plan (DCP) for its
SaaS service then submits such DCP to the DCaaS service to
implement it. DCP specifies the required consistency level for
each data object and its corresponding object stabilization
method. Service providers could change their DCP at run time
without changing their service code. For each data access,
DCaaS service checks the required consistency level defined
in the DCP; then invokes the corresponding data access
procedure. This section discusses different management
aspects of SaaS data consistency plan. First it introduces the
supported data consistency levels and provides a formal
definition for a DCP. Then it describes DCP change
management process. Finally, it shows the adopted object
stabilization protocol as well as the supported stabilization
methods in case of conflicts.

A. DCP Definition and Creation

Currently, we support three levels of data consistency (i.e.
Strong, Eventual, and Session). Strong consistency implies
that the global correctness of the data object is maintained
such that any SaaS instance accessing the object is actually
reading its up-to-date correct value. Eventual consistency
implies that object correctness is locally maintained (i.e.
within a cloudlet) but not globally (i.e. between all cloudlets).
However, if there are no global conflicts between cloudlets,
and no more new updates are made to the object, eventually
all database accesses will return the same last updated value,
as cloud vendors perform a lazy replication process between
cloudlets to synchronize their DBs [12]. Session consistency
implies that the SaaS instances read its own writes only. This
means object data will be maintained only at the DCaaS
service instance cache and does not go to the PaaS service for
storage. Hence, those data will be lost after the session
terminates. We require each SaaS provider to define a DCP
for its service; hence each SaaS service instance will follow
the same service DCP. A DCP indicates the required
consistency level for each data object. Also it indicates the
required stabilization method to be applied in case of object
values divergence. DCP also specifies the cloudlet quota for
strong consistency objects. We formally define a DCP as a set
of Object Access Patterns (OAP) that DCP = {OAP(i)}, where
an OAP(i) = < i, c, s, q>, i is the data object reference, c is the
required consistency level, s is the required stabilization
method, and q is the cloudlet quota distribution plan and it is
defined as a set of cloudlet quota allocations, that q=
{<Cloudlet reference , CloudletQuota >}. As the number of
cloudlets is always small, the size of such quota list is not a
problem. We support different stabilization methods, more

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No.5, 2013

63 | P a g e
www.ijacsa.thesai.org

details about object stabilization will be provided later. We
require each data object to have only one OAP. For example, a
SaaS provider for a flight reservation service X, which require
access for two data objects Customer and Flight, The
corresponding DCP could be defined as DCP(X)= {<Customer,
Eventual, Thomas, {}>, <Flight, Strong, Exact, {<1,50>, <2,
200>} >}. This means the consistency of the customer object
is eventual and Thomas write rule (i.e. last write wins) will be
applied in case of conflicts, while the consistency of the flight
object is strong, and history method will applied in case of
conflicts. It also shows that we have two cloudlets, the first
cloudlet has a quota of 50, and the second one has a quota of
200. As we can see the given DCP definition is working at the
object level, however we could extend the definition to work
on the attribute level, by defining DCP as a set of Attributes
Access Patterns (AAP) that DCP = {AAP(I , j)} , where an
AAP(I,j) = < i, j, c, s, q>, i is the data object reference, j is the
attribute reference, c is the required consistency level, s is the
required stabilization method, and q is a set of allocated
cloudlets quota. For example, a DCP over flight attributes
could be defined as {<Flight, PlaneModel, Eventual, Thomas.
{}>, <Flight, Capacity, Strong, Max, {<1, 50>, <2, 200>}>}. We
do not require specific granularity level for the DCP
definition; we leave this choice to SaaS providers to decide. If
the SaaS providers choose an object level or a higher level,
DCP size could be small and fits nicely in memory but
performance could be affected due to local concurrency
control locks. However, if they choose the attribute level, the
DCP size could be big; hence DCP could not fit into memory
and require storage. Of course, this is a classical optimization
problem a SaaS provider has to solve. Once quick solution is
to compress DCPs using any query-aware compression
technique (such as one in [26]) to avoid DCP storage. Another
approach to minimize the DCP size is to assume default values
for unspecified objects and attributes. We use eventual
consistency as the default consistency level, and Thomas rule
as the default stabilization method. It is important to note that
in this paper, we require DCP to have only one access pattern
for each object/attribute. However, in future work we are
planning to relax this condition to allow a given object to have
different access patterns that DCaaS could choose from in a
context-based manner (i.e. choice could be based on the
executed SaaS operation, PaaS response time, Users SLAs).

B. DCP Change Management

 To provide flexibility for SaaS providers, we provide
them with the option to change their DCPs at run time
whenever they like and the DCaaS service will do the
necessary adjustments to fulfill the new requirements. The
DCaaS service contains different components to handle
different consistency requirements (refer to Figure 4). It is
important to note that change in DCP does not require change
in the SaaS service data access code, as DCP change occurs
through a specific DCP APIs, while the data access occurs via
invocations for different API operations, more details about
DCaaS APIs will be given in section 6.

As we do not allow different access patterns for the same
data object, whenever DCaaS service instance receives a
request for DCP change, it automatically becomes the DCaaS
instances leader and notifies the other DCaaS service instances

with the DCP change and make sure it is executed at all
instances. For consistency level upgrade request from session
to eventual, the DCaaS instance leader updates the
corresponding DCP entry, then stores the object value written
in its cache into the data store via the PaaS service, and then
notifies other instances and waits for their acknowledgments.
If all instances replied, it considers the request is fulfilled. In
case of missing or slow acknowledgment, the leader tries
back after certain timeout window, if an instance still not
replying, the leader consider it as a failed node and store the
change request for later when it recovers, more details about
DCaaS recovery will be given later. For consistency level
upgrade request from session/eventual to strong, the DCaaS
instance leader updates the corresponding DCP entry, and then
starts to stabilize the object values in all cloudlets as
correctness of such values were not maintained before the
upgrade request. This is done by broadcasting a stabilization
request for all DCaaS instances. We have different strategies
for stabilizing different object values that differ in their costs,
more details are given later in Section 5.3. Once the leader
stabilizes the object value, it computes the DCaaS instances
quotas then sends for each DCaaS instance the new object
value and its allocated quota, more details about quota
computation are given in Section 6. For consistency level
downgrade request from strong to eventual, the DCaaS
instance leader updates the corresponding DCP entry to stop
quota checks, as now only local correctness is required. For
consistency level downgrade request strong/ eventual to
session, the DCaaS instance leader updates the corresponding
DCP entry, and then creates an entry in its cache for the object
and stop storing object updates into the data store as all
updates has to in the cache only. In both cases, DCaaS leader
notifies other DCaaS instances with the change and waits for
their acknowledgement.

C. Objects Stabilization

 When a given DCaaS instance receives a request for
consistency upgrade to strong consistency, it requires
stabilizing the object value, as every DCaaS instance could
have a different value. Our stabilization protocol is very
simple. First, we assign the DCaaS instance receiving the
change request as the leader who will orchestrate the change.
Other DCaaS instances will be the followers. The leader sends
a stabilization request messages to all DCaaS instances and
waits for their response.

Each DCaaS instance must reply back to the leader with
the current value of the object using a stabilization response
message. The leader collects all values and computes the new
object value by applying the stabilization method defined in
the DCP. Finally, the leader sends to each DCaaS instance a
stabilization command message to propagate the computed
value and monitor instances acknowledgments. Once a DCaaS
instance receives a stabilization command, it updates the
object value and its DCP and replies with an update
acknowledgement. Of course, implementation of such
protocol requires a state machine to be installed at each
DCaaS instance, exchanged messages between state-machines
are calls for DCaaS API operations; more details about DCaaS
APIs will be given in Section 6. Figure 3 summarizes the
steps of the stabilization protocol.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No.5, 2013

64 | P a g e
www.ijacsa.thesai.org

Fig. 3. Stages of Object Stabilization Protocol

Figure 3 shows the different stages of the protocol. To
simplify the diagram we assumed propagation delays between
DCaaS instants are constant. However, in real life,
propagation delays are different. Such stabilization process is
a very costly process as it involves communication over WAN
connections. Hence, we advise SaaS providers to avoid
frequent consistency upgrades. We assume all exchanged
messages are asynchronous. We propose different types of
stabilization methods in order to provide SaaS providers with
the flexibility to choose the most suitable ones for their
business logic. Each data object will have its own stabilization
method defined in the DCP. To stabilize an object, we propose
to use different methods for stabilization varying in
complexity, cost, and correctness. 1) Exact method. 2)
Thomas write rule. 3) Basic uncertainty filters: Min, Max,
Avg, and Sum. 4) Customized uncertainty filter. The exact
method guarantees the correctness of the data object value.
However, it is the most expensive method and we do not
recommend it for SaaS providers due to the huge amount of
communication and computation involved. The exact method
requires keeping track of transaction history at each DCaaS
instances, then sending these histories to the leader to find a
global order for all transactions. Then the leader has to
execute these transactions to compute the new value, and then
distribute the new history and new value to other DCaaS
instances. Of course, finding such global transaction order is a
very expensive task as it could require many transactions
rollbacks over all DCaaS instances. Hence, SaaS providers
should use this method only for objects that is extremely
crucial for their business logic. The Thomas write rule is one
of the most famous methods in conflict resolution. It simply
returns the value with the most recent time stamp. Hence, each
DCaaS instance should send the leader the object value with
its corresponding time stamp. The leader simply chooses the
most recent one. The problem with this approach if real time is
used is to have global clock synchronization, which is not
feasible. However, there are many solutions proposed in
distributed computing area for this problem such as use of
lamport clock [16]. To avoid the headache of global clock
synchronization, we provide the option to use basic
uncertainty filter that are used in the area of probabilistic
databases [1] [2]. That DCaaS follower sends only the values,
and the leader applies one of the basic probabilistic basic
functions (such as Min, Max, Avg, Median, and Sum) to get
the new object value. Finally, we provide the SaaS providers
to provide their own customized uncertainty filters if they did
not like to use basic ones.

VI. DATA CONSISTENCY AS A SERVICE

DCaaS service is basically proposed to decouple SaaS
developers from managing data uncertainty aspects in their
services code. SaaS developers will not write SQL statements
in their SaaS service code to access data; instead they will
write invocations for the DCaaS service APIs operations to
access their data. Also DCaaS service decouples SaaS
developers from PaaS services, hence it ensures SaaS clouds
portability as no changes will occur to the SaaS service code if
we change cloud vendors, the only change will be in the
DCaaS service interface with the PaaS service, which could be
managed by service adapters [28]. DCaaS takes the
consistency requirements of a given SaaS service as a DCP,
and then automatically implements and executes the given
DCP for each data access. SaaS developers have the flexibility
to change their consistency requirements on run time without
changing their SaaS service code. This section briefly
discusses various design aspects of DCaaS service. First, it
discusses the DCaaS structure and configuration, and then it
describes the different DCaaS APIs, and finally it illustrates
adopted protocols for DCaaS service recovery.

A. DCaaS Structure and Configuration

 As we support three different levels of data consistency,
DCaaS service should have implementations for approaches
realizing the adopted data consistency levels. To decouple
DCaaS service code from the realizing approaches
implementations, we encapsulate each data consistency
approach as a component service to be invoked by the DCaaS
service. We can think of the DCaaS service as the orchestrator
for these service components. For example, a developer could
invoke a DCaaS write operation to update a value of an object
(e.g. DCaaS.Write (X,1). Listing 1 depicts a sketch for a
DCaaS service write operation. DCaaS should invoke the
write operation version corresponding to the required data
consistency level.

Listing 1: A sketch for DCaaS Write operation
int Write (DataObject X, ObjectValue V)
{
 Consistency Level L = GetConsistencyLevel(X);
 Switch (L)

 {Case Strong : status= Strong-Write (X, V);
Case Eventual: status= Eventual -Write (X, V);
Case Session: status= Session -Write (X, V);
//…

 }
 return (Status);
 }

Each component service communicates with the PaaS

service to perform the required operations on the data store, as
in Figure 4. The DCaaS service is not necessary to be located
on the same machine of its service components or the PaaS
service. We require that each cloudlet to have at least one
SaaS service instance, one DCaaS service instance and one
PaaS service instance.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No.5, 2013

65 | P a g e
www.ijacsa.thesai.org

Fig. 4. SaaS, DCaaS, PaaS interactions

 A cloudlet management system could clone SaaS and

DCaaS service instances to improve performance, however,

we require a certain configuration protocol to be followed

whenever a new DCaaS service instance is created in order to

ensure DCaaS functional correctness. When a DCaaS service

instance is created, it will not be in the active state unless the
configuration process is finalized. This configuration process

could be done manually or automatically. In the manual mode,

after a SaaS provider creates a DCaaS instance at each

cloudlet, it provides each DCaaS instance with the

corresponding DCP as well as a list of other DCaaS service

instances (i.e. we define it as the peer list). Once a DCP is

loaded, the DCaaS service instance creates a list of Strong

Consistency Objects Quotas (i.e. SCOQ = {<Object

Reference, InstanceObjectQuota>}) to keep track of its quota.

This is done by copying DCP strong object entries into the list

and setting InstanceObjectQuota to the quota of its cloudlet
(i.e. CloudletQuota defined in the DCP). In case a cloudlet has

only one DCaaS service instance, InstanceObjectQuota will

be equal to CloudletQuota. However, if the cloudlet has

multiple DCaaS instances, The CloudletQuota should be equal

to the sum of all InstanceObjectQuota belonging to its DCaaS

service instances. In the automated mode, the SaaS providers

provides only one DCaaS instance with the DCP and the peer

list, and this DCaaS service automatically contacts the other

DCaaS Service instances in the peer list to upload the required

DCP and the given peer list by invoking specific DCaaS APIs.

Again, once each DCaaS loads its DCP, it creates its local

SCOQ list. Once a DCaaS instance has its DCP, peer list, and
SCOQ list ready, it becomes now in the ready state. When a

new DCaaS instance is added to the DCaaS peer network, the

cloudlet quota of strong consistency objects specified in the

DCP has to be redistributed among all DCaaS service

instances inside this cloudlet, and then each DCaaS service

instance should update its SCOQ list with the new quota

values. This is done via a join DCaaS instance protocol, in

which a new DCaaS service instance sends to the current

cloudlet leader a join request. If there is no current leader, the

new instance sends the join request to any existing DCaaS

service instance, which will become the leader. We adopted
this simple leader selection approach to avoid doing leader

election process. Once a leader receives the join request and

makes sure the new instance is authentic and not malicious

(security aspects are out of the scope of this paper), it adds it

to its peer list and updates its SCOQ list by dividing the

cloudlet quota of each object by the number of instances in the

new peer list, then sends add instance request to all DCaaS

instance in its old peer list. Once a DCaaS instance receives

the update peer list request, it adds the new node to its peer list

and updates its SCOQ list by dividing the cloudlet quota of

each object by the number of instances in the new peer list,

and then acknowledges the leader. Once the leader receives all

acknowledgments, it replies back to the new instance with the
join accepted message and provides it with the peer list and

the DCP, from which the new instance will compute its SCOQ

list. Figure 5 summarizes the steps of the join protocol.

Fig. 5. Stages of DCaaS Instance Join Protocol

Once each DCaaS instance computes its new SCOQ list, it
becomes in the ready state and could process user requests. It
is important to note that DCaaS instances check first if the
required instance to be added is not in their peer list before
they do the SCOQ list computation, otherwise they keep the
old SCOQ list, as no changes are occurred. This is important
issue to make sure the join requests from the recovered
instances or new instances are idempotent. DCaaS instance
recovery is discussed in the later in this section.

B. DCaaS APIs

 DCaaS service API should support operations required
for different service interactions. For example, it should
support data access operations, operations for objects
stabilization, operations for DCP management and quota
redistribution, operations for peer list management, and
operations for quota borrow and transfer. For data access
APIs, DCaaS service implements a simple API interface for
reading and writing operations. The read operation API is
Read (DataObject X), while the write operation API is write

(DataObject X, ObjectValue V). For managing data
consistency plans, DCaaS service should provide DCP
management APIs such as LoadDCP(DCP p),
ModifyConsistencyLevel(DataObject X, ConsistencyLevel L),
ModifyCloudletQuota(DataObject X, CloudletReference R,
Quota Q). LoadDCP is used to load a DCP when a DCaaS
service is created, while ModifyConsistencyLevel, is used to
modify a given data object consistency level.
ModifyCloudletQuota is used to modify a given cloudlet
quota. For peer list management, we should have APIs such
as LoadPeerList(List L) to upload a peer list when DCaas is
created, UpdatePeerList(UpdateType T, UpdateDetails D) to
update peer list contents. For quota redistribution protocol,
we should have APIs such as JoinRequest (Instance I) to
request to join the current DCaaS peer network, UpdateAck
(Instance I) to inform leader with updates confirmation, and

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No.5, 2013

66 | P a g e
www.ijacsa.thesai.org

joinAck(DCP P, PeerList R) to acknowledge the acceptance of a
new DCaaS instance. For stabilization Protocol, we should
have APIs such as StabReq(Object x) to request stabilization
of a given object, StabRes(Object x) to respond with the object
value, and StabCom(Object x) to enforce a common object
value, and finally StabAck(Object x) to acknowledge object
stabilization. For quota borrowing protocol, we should have
APIs such as QBrwReq(Object x, Amount y) to request
borrowing a certain amount of quota, QuotaTransfer(Object x,
Amount y) to transfer certain amount of quota to another
DCaaS instance, and QuotaTrAck(Object x, Amount y) to
acknowledge the quota transfer process. For leader election
protocol, we should have APIs such as LeaderReq(Instance I)
to nominate a leader, LeaderAcK(DCP P, PeerList R) to accept
a leader nomination, Synch(DCP P, PeerList R) to synchronize
DCaaS instances, and SynchAck to acknowledge the success
of the synchronization process. Of course all DCaaS APIs will
be under proper security management; however security is out
of the scope of this paper.

C. DCaaS Recovery

 In case of a given DCaaS instance failure. We will use
classical DB recovery approaches using data logs for
recovering eventual consistency objects to rollback any
uncommitted transactions, while for session consistency
objects, we will just fetch the last values from DB. The
problem will be in the strong consistency objects, as the
allocated quota for strong consistency objects has to be
redistributed among remaining DCaaS instances. Quota
redistribution is done when the leader or any other DCaaS
instances noticed the failure of such DCaaS instance. Hence, it
sends UpdatePeerList request to all the DCaaS instances in
the peer list, so they can remove such instance from their peer
list and update their SCOQ list. When a DCaaS instance
recovers from failure, it follows the join protocol in Figure 5
to rejoin the DCaaS peer network. It is important to note that
join request is idempotent, hence if multiple copies of the
same join request are somehow created, they will have the
same effect and no problems could occur. It is also important
to note that when a DCaaS instance receives a request for
adding a new instance, it checks its log to see if it has a
previous history with this instance that if there exist any
unfinished communications or acknowledgments so that they
can pursue it. The recovery problem becomes more
complicated in case of a leader failure during a given protocol
execution. In this case, DCaaS instances who still alive could
need to elect a different leader to accomplish the required
tasks. For example, in case of join protocol, DCaaS instances
will send their update acknowledgments to the new instance
directly if they notice leader failure. In this case, the new
instance will receive multiple join acknowledgments, which
will not cause a problem as the join acknowledgments
operation is idempotent. However, if the new DCaaS instance
times out for not receiving any join acknowledgement, it could
resubmit its request to another DCaaS instance. In case of the
leader failure during stabilization protocol (see Figure 3), if it
failed before receiving stabilization responses, we will have
no problems as no DCPs have changed, however if it failed
before receiving all stabilization acknowledgments this means
we could have a problem. As some DCaaS instances could

have successfully received the stabilization command and
updated their DCPs while other instances could not do such
updates, if the leader recovers back it could pursue the
stabilization process with the remaining DCaaS instances,
however if the leader could not recover, this means we have a
DCP inconsistency problem as different DCaaS instances will
have different versions of the DCP. This problem will be
solved after the election of a new leader that will make sure all
DCaaS instances are using a common DCP configuration.
Leader election occurs when one or more of the follower
instances notice the leader failure, and broadcast the election
request. Leader election process occurs as depicted in Figure
6. First, a DCaaS instance broadcasts to other instances a
request for being the leader, other instances could accept and
respond by their (compressed) DCPs and peer lists or reject
the request. If majority of instances accepted, this means a
new leader is elected, otherwise elections has to be repeated.
Once a new leader is elected, the new leader starts
synchronizing other DCaaS instances to have a common DCP
and peer list. Once a DCaaS instance receives a
synchronization request, it updates its information and
computes its new SCOQ. Of course we could adopt different
strategies for choosing a common DCP and a common peer
list. The simplest strategy is choosing the most recent ones.
Other strategies is to choose the most restrictive ones, the least
restrictive ones, ones leading to least cost updates, etc.

Fig. 6. Stages of Leader Election Protocol.

In our implementation, we let the choice of the DCP
selection strategy as one of the configuration parameters for
DCaaS services. Of course, there is no optimal strategy as
each one has pros and cons. Comparison between strategies is
out of the scope of this paper due to space limitation. In case
of the leader failure during the quota borrowing protocol (see
Figure 2), we will have no problems if failure occurs before
receiving the QuotaTransfer messages as no quota has
actually transferred. However, if failure occurs after sending
QuotaTrack messages, this means transferred quotas are lost.
Again, if the leader recovered before an election request
generation, the quotas will be recovered; otherwise quotas will
be redistributed during the new leader election process. It is
important to note that there is impossibility of distributed
consensus with one faulty process [10]. Hence, fault tolerance
algorithms should be based on majority rather than complete
consensus. Therefore, implementations of proposed
approaches adopt a majority of instances (as in Paxos
algorithms [17-19]), where f is the number of expected failed
instances. We are also extending this approach to handle SaaS
requests in order to ensure Byzantine fault tolerance [14] for

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No.5, 2013

67 | P a g e
www.ijacsa.thesai.org

SaaS services. This is achieved by allowing the a SaaS
service to send its requests to multiple DCaaS service
instances, and then accept a response only when it is returned
by majority of DCaaS instances, details of this approach is out
of the scope of this paper.

VII. EXPERIMENTS

We performed basic simulation experiments using the
cloudsim tool [25] that enables us to simulate cloud
environments. For simplicity, we assumed that we have only
one DCaaS instance per cloudlet; we have two identical
cloudlets (i.e. datacenters) with WAN connection of 500ms,
and one user-base accessing the first cloudlet with latency
50ms. This user-base generates 1000 request per hour, and
each request contains one read and one write operations for a
strong consistency data object. We simulated both cloudlets
with 5 virtual machines each. Each virtual machine contains
512 MB and 1KB bandwidth. Each cloudlet is build using two
4-core processors identical servers with 10000 MIPS, 200GB
RAM, 10 TB storage, and IMB bandwidth. We run the
simulation for period of 1 day and computed the average,
minimum and maximum response time for the whole user-
base. In our experiments, we compare between the pure
locking approach (that locks record on both cloudlets for
every request), against the proposed DCaaS service approach.
We assumed all objects in the DCP require strong data
consistency. However, to show the borrowing effect, we
repeated the experiment, by adopting different global quota
borrowing rates from outside the cloudlet, which are 0%, 10%,
and 50%, which means are 0%, 10%, and 50% of the data
accesses will require quota borrow operation, respectively. We
choose to compare global quota borrowing (among cloudlets)
rather than local quota borrowing as global quota borrowing is
the main process that could negatively affect response time
due to access of WAN connections. However, local quota
borrowing process occurs internally inside the cloudlet where
latency is small, hence it will not have a huge impact of
response time. Experiments results are listed in Table 1.

TABLE I. EXPERIMENTS RESULTS

 As we can see, when the quota is enough (i.e. 0% quota
borrow), the DCaaS instance does not need to communicate
with the other DCaaS instance through the WAN, as all
requests are fulfilled within the cloudlet; hence response time
is drastically improved (i.e. from 1600ms to 200 ms).
However, when DCaaS needs to borrow quota from the other
cloudlet response time starts to increase as WAN connection
is used, for example when 50% quota borrow is required
response time becomes 3 times worse (i.e. 600 ms). Based on
results in Table 1, we conclude that response time increases
when the global quota borrowing percentage increases. Hence,

to minimize such response time, we argue that the initial quota
distribution among cloudlets should be based on their user-
based demand rates, that cloudlet with higher demand should
get higher percentages of the quota.

 To show the effect of DCP adoption on performance, we
conducted a similar experiment when the percentage of strong
data objects in the DCP is 0%, 10%, 50%, and 100%
respectively. We assumed that the global quota borrow
percentage is 50% to have comparable results with Table 1.
Experiments results are listed in Table 2. As we can see,
when we have no strong data objects (i.e. the 0% DCP case)
the response time improves as no need for borrowing
operations at all. We achieved much better performance (i.e.
50 ms) when compared with the 0% global quota borrow case
in Table 1 (i.e. 200 ms). This is because there is no locking is
required to maintain local correctness. However, when we
started to increase the percentage of the strong data objects in
the DCP, response time starts to increase as quota borrowing
operations are required, which require access for WAN
connections. Hence, we conclude that to improve
performance, we should minimize the percentage of the strong
data objects in the DCP. However, in case of having strong
data objects in the DCP, the initial quota distribution between
cloudlets should be distributed in a manner that minimizes the
global quota borrowing rate. We argue that the quota should
be distributed according to the cloudlet user-base demand rate.

TABLE II. EXPERIMENTS RESULTS

VIII. CONCLUSION AND FUTURE WORK

 In this paper, we argued that strong consistency
requirements should be adopted only for data objects crucial
for application correctness, otherwise weaker forms of data
consistency should be adopted. Therefore, we proposed to use
the concept of data consistency plan (DCP) to define the
consistency requirements for SaaS services, and proposed to
use a new platform service (i.e. Data Consistency as a Service
(DCaaS)) for executing such DCP plan to decouple SaaS
developers from managing data uncertainty issues in their
code. We also proposed a quota-based approach for
managing data uncertainty on eventually consistent cloud data
stores. The proposed approach ensures global data consistency
by distributing the capacity of strong consistency data objects
among datacenters, and then adopts a lazy replication
approach for synchronizing the data stores. Experiments show
that proposed quota-based approach realized by the DCaaS
service provides much better response time when compared
with locking and blocking techniques.

 Future work will be mainly focused on providing SaaS
developers more flexibility for defining the service DCP, by

Approach

Avg

(ms)
Min

(ms)
Max

(ms)

DCP with 0% Strong
Consistency Objects

50 36 65

DCP with 10% Strong
Consistency Objects

66 48 129

DCP with 50% Strong
Consistency Objects

200 141 260

DCP with 100% Strong
Consistency Objects

600 414 815

Approach

Avg

(ms)
Min

(ms)
Max

(ms)

Locking Approach 1600 1038 2242

DCaaS with 0% Quota

Borrow

200 150 258

DCaaS with 10% Quota
Borrow

350 249 465

DCaaS with 50% Quota
Borrow

600 414 815

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No.5, 2013

68 | P a g e
www.ijacsa.thesai.org

allowing an object to have different consistency levels at the
same time; depending on the performed SaaS operations and
customers’ SLAs. This will be achieved by having a new
object model that adopts different uncertainty modeling and
analysis techniques.

REFERENCES

[1] D. Barbar´a, H. Garcia-Molina, and D. Porter. The management of
probabilistic data. IEEE TKDE, 4(5), 1992.

[2] O. Benjelloun, A.D. Sarma, A. Halevy, and J. Widom. ULDB:
Databases with Uncertainty and Lineage. In VLDB, 2006.

[3] R. Buyya, J. Broberg, and A. Goscinski (eds), “Cloud Computing:

Principles and Paradigms”, ISBN-13: 978-0470887998, Wiley Press,
New York, USA, March 2011.

[4] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M.

Burrows, T. Chandra, A. Fikes, and R. E. Gruber. Bigtable: A
Distributed Storage System for Structured Data. In OSDI, pages 205–

218, 2006.

[5] B. F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein, P.
Bohannon, H.-A. Jacobsen, N. Puz, D. Weaver, and R. Yerneni.

PNUTS: Yahoo!’s hosted data serving platform. Proc. VLDB Endow.,
1(2):1277–1288, 2008.

[6] S. Das, D. Agrawal, and A. E. Abbadi. G-Store: A Scalable Data Store

for Transactional Multi-Key Access in the Cloud. In SoCC, 2010.

[7] S.B. Davidson, H. Garcia-Molina, and D. Skeen, “Consistency in
partitioned networks”, ACM Comput. Surv, vol. 17, no. 3, pp.341–370,

1985.

[8] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,

A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels. Dynamo:
Amazon’s highly available key-value store. In SOSP, pages 205–220,

2007.

[9] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker, H.
Sturgis, D. Swinehart, and D. Terry, “Epidemic algorithms for replicated

database maintenance”, in Proc of ACM Conference on Principles of
Distributed Computing (PODC'87), 1987.

[10] M. Fischer, N. Lynch, and M. Paterson. Impossibility of Distributed

Consensus With One Faulty Process. Journal of the ACM, 32(2), 1985.

[11] S. Gilbert and N. Lynch, “Brewer’s Conjecture and the Feasibility of
Consistent, Available, Partition-Tolerant Web Services”, SIGACT

News, vol. 33, no. 2, 2002.

[12] J. Gray, P. Helland, P. O’Neil, and D. Shasha, “The dangers of

replication and a solution”, in Proc. of ACMSIGMOD International

Conference on Management of Data, pp. 173–182,1996.

[13] P. Helland. Life beyond distributed transactions: an apostate’s opinion.

In CIDR, pages 132–141, 2007.

[14] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong,” Zyzzyva:
Speculative byzantine fault tolerance”, In Symposium on Operating

Systems Principles (SOSP), 2007.

[15] T. Kraska, M. Hentschel, G. Alonso, and D. Kossmann, “Consistency
Rationing in the Cloud: Pay only when it matters”, in Proc. of the

international Conference on VLDB, 2009.

[16] L. Lamport. Time, Clocks, and the Ordering of Events in a Distributed
System. Commun. ACM, 21(7), 1978.

[17] L. Lamport. The part-time parliament. ACM Transactions on Computer

Systems, 16(2):133–169, May 1998.

[18] L. Lamport. Fast Paxos. Distributed Computing, 19(2):79–103, Oct.
2006

[19] L. Lamport. Lower bounds for asynchronous consensus. Distributed
Computing, 19(2):104–125, Oct.2006.

[20] D. B. Lomet, A. Fekete, G. Weikum, and M. J. Zwilling. Unbundling

transaction services in the cloud. In CIDR Perspectives, 2009.

[21] K. Manassiev and C. Amza, “Scalable database replication through
dynamic multiversioning”,in Proc. Centre for Advanced Studies on

Collaborative research, 2005.

[22] H. Wada, A. Fekete, L. Zhao, K. Lee and A. Liu, “Data Consistency
Properties and the Trade-offs in Commercial Cloud Storages: the

Consumers' Perspective”, in Proc. of the 5th biennial Conference on
Innovative Data Systems Research, 2011.

[23] W. Vogels, “Eventually Consistent”, ACM Queue vol. 6, no. 6,

December, 2008.

[24] Cassandra, available: http://cassandra.apache.org/

[25] CloudSim, available : http://www.cloudbus.org/cloudsim/.

[26] I. Elgedawy, B. Srivastava, and S.Mital, “Exploring Queriability of

Encrypted and Compressed XML Data”, In proceedings of the 24th of
the International Symposium on Computer and Information Sciences,

Northern Cyprus, 2009.

[27] I. Elgedawy, “Data Consistency as a Service (DCaaS)”, submitted to the
27th of the International Symposium on Computer and Information

Sciences, France, 2012. Submission number 11.

[28] I. Elgedawy, “On-demand conversation customization for services in
large smart environments”, IBM Journal of Research and Development,

Special issue on Smart Cities, Vol. 55, No. 1/2, January 2011.

