
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 10, 2013

109 | P a g e
www.ijacsa.thesai.org

Optimizing the use of an SPI Flash PROM in

Microblaze-Based Embedded Systems

Ahmed Hanafi

University Sidi Mohammed Ben Abdellah

Fès, Morocco

Mohammed Karim

University Sidi Mohammed Ben Abdellah

Fès, Morocco

Abstract—This paper aims to simplify FPGA designs that

incorporate Embedded Software Systems using a soft core

Processor. It describes a simple solution to reduce the need of

multiple non-volatile memory devices by using one SPI (Serial

Peripheral Interface) Flash PROM for FPGA configuration data,

software code (Processor applications), and miscellaneous user

data. We have thus developed a design based on a MicroBlaze

soft processor implemented on a Xilinx Spartan-6 FPGA SP605

Evaluation Kit. The hardware architecture with SPI flash was

designed using the Xilinx Platform Studio (XPS) and the

software applications, including the bootloader, was developed

with Xilinx Software Development Kit (SDK). ISE Design Tools

prepared by Xilinx Company, is employed to create the files used

to program flash memory which are SREC (S-record) file

associated with software code, Hexadecimal file for user data,

and bootloader file to configure the FPGA and allows software

applications stored in flash memory to be executed when the

system is powered on. Reading access to the SPI Flash memory is
simplified by the use of Xilinx In-System Flash (ISF) library.

Keywords—Microblaze; ISF; Bootloader; SREC;

Configuration; Bitstream SPI Flash

I. INTRODUCTION

SRAM-FPGAs such as Spartan-6 from Xilinx are
configured by loading application-specific configuration data
(bitstream) into internal memory (CMOS Configuration
Latches), then it must be reconfigured after it is powered down.
Spartan-6 can configure itself from an external nonvolatile
memory device or they can be configured by an external smart
source, such as a DSP processor, or microcontroller. In the
Master Mode configuration [1], the FPGA automatically loads
itself with configuration data from an external SPI (Serial
Peripheral Interface) Flash PROM as shown in figure 1.

On the other hand, many FPGA designs in space
applications, automobiles, medical field and industrial control
system, incorporate Embedded Software Systems using soft
core Processor such as Microblaze and utilize external volatile
memory to execute software code. This kind of system must
also include a non-volatile memory to store the software code
and small amounts of user data.

To simplify system design and reduce cost and
consumption, we propose a Microblaze system that stores
software code, user data, and configuration data in one SPI
Flash device.

MOSI

DIN

CSO_B

CCLK

Spartan-6 FPGA

DATA_IN

DATA_OUT

SELECT

CLOCK

SPI Flash

Fig. 1. Master Serial/SPI Mode with SPI Flash memory.

The figure 2 shows the memory organization used to store
multiple blocks of data in the SPI flash PROM:

 The configuration section including the bitstream and
the bootloader must be stored at address 0x0.

 The software application section can be anywhere in the
SPI Flash based on the size of the bitsteam file. The
software section start address will be usefull for the
boot loader to work.

 The user data section is defined by a synchronization
word followed by data. The synchronization word is
used because the space memory between software
application section and user data section is random.

Our work is based on the concepts described in
documentation of Xilinx and Avnet, namely, how to create a
Microblaze design with AXI (Advanced eXtensible Interface)
system [2][3][4] and how to bootload a software application in
BPI (Byte Peripheral Interface) configuration mode and SPI
configuration mode [5][6].

0x000000

Configuration Section

User Data Section

Software Application

Section 1

Data Block 1

0x7FFFFF

(8MByte)

Software Application

Section 2

Uncertain

Uncertain

Uncertain

Uncertain

Data Sync Word 1

Data Sync Word 2

Data Block 2

Fig. 2. SPI Flash memory map.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 10, 2013

110 | P a g e
www.ijacsa.thesai.org

128 MB

DDR3 SDRAM

8 MB Winbond

QUAD SPI Flash

LED’saxi_gpio

DIP Switches

Push Buttons

USB - UART

axi_gpio

axi_gpio

axi_uartlite

axi_quad_spi

AXI

Interconnect

Block

AXI DDR3

Memory Controller

axi_s6_ddrx

Microblaze

I-cache 4kB

D cache 4kB
BRAM

32KB

AXI_4

AXI_4

AXI_4

AXI_4

AXI_4 lite

AXI

Interconnect

Block

AXI_4 lite

AXI_4 lite

AXI_4 lite

AXI_4 lite

D-LMB

I-LMB

External Connection

AXI relation ship

M S

Clock_generator OSC @ 27MHz
100MHz

600MHz

50MHz

MDM

debug_module

DEBUG

AXI_4 lite

J

T

A

G

COM

Monitoring

KB : Kilo Byte

Fig. 3. Reference System Hardware Platform.

Our contribution lies in:

 Defining software flows for appending a PROM file
with multiple software sections and one user data
section with separate blocks of data for each
application.

 Improving the use of Xilinx In-System Flash (ISF)
library to read software data and user data from SPI
Flash.

II. HARDWARE DESIGN

The MicroBlaze reference system is implemented on the
Xilinx Spartan-6 FPGA SP605 Evaluation Kit using Xilinx
Platform Studio (XPS) Tool Suite provided by the Embedded
Development Kit (EDK) of Xilinx. The architecture shown in
figure 3 is created using the Base System Builder (BSB)
wizard within XPS and it is based on the AXI interconnect,
which operates at 50 MHz. Our design includes the main
following IPs cores:

 DDR3 SDRAM interface (axi_s6_ddrx) operating at
600MHz. The on-board SDRAM will contain the
application program chosen and copied from SPI Flash
by bootloader.

 SPI Flash interface (axi_quad_spi) operating at
100MHz. The used Winbond SPI Flash memory
W25Q64BV can run up to 80MHz in standard SPI
mode, then we changed the C_SCK_RATIO parameter
in AXI Quad SPI core to 2 as described in [7] (see
figure 4). This will run SPI Flash at 50MHz.

 General Purpose Input Output (axi_gpio) operating at
50MHz and used to communicate with LEDs, DIP
switches and Push Buttons. DIP switches will trigger
the download and execution of one of the software
codes stocked in SPI Flash memory.

 On-chip dual-port blocks RAM (BRAM) using to store
the bootloader file. It is designed to be small not to
exceed the BRAM limits.

Fig. 4. Updating SPI Interface Clock Rate.

This hardware platform has been exported to SDK to be the
basis of all software work.

III. SOFTWARE APPLICATIONS AND THEIR FLASH IMAGES

The software applications consist of two C projects based
on the Peripheral test application template provided in
Software Development Kit (SDK). The template will be
customized as follows:

 For both applications, we used the same Board Support
Package (BSP) after having added and configured the
ISF library as shown in figure 5 and described in [8].

 The difference between the two applications lies in the
messages sent via UART and the blinking of LEDs.

 The linker script of each application project was
updated to allow them to be executed from DDR3
SDRAM memory.

 In each application, we used a set of functions to
handle the interaction with the corresponding block of
user data. This part will be detailed in section 5 of this
paper.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 10, 2013

111 | P a g e
www.ijacsa.thesai.org

Fig. 5. Setting ISF Library with SPI Flash family.

Then, we create a flash image of each application project
that we can store in SPI Flash, and we chose the S-record
(SREC) file format. This is the most flexible format since it
consists of ASCII character strings, specially formatted for
loading software data into memory. This format also allows
using the bootloader application template provided in SDK.
mb-objcopy command is used to generate a SREC file from the
(executable file) ELF of each application as follows:

mb-objcopy -O srec Application.elf Application.srec

IV. THE BOOTLOADER FILE

The hardware bitstream including the bootloader is stored
in SPI Flash memory and used to configure the Spartan-6
FPGA. After the FPGA configuration, the processor starts
executing the bootloader that will select and copies the
executable software from a pre-determined location in SPI
Flash to DDR3 SDRAM (Depending on the condition of the
DIP switches).

Based on the Spartan-6 Configuration User Guide [1],
bitstream file of the used Spartan-6 LX45T has a size of
11,939,296 bits (1458 KB). The Winbond SPI Flash contains
2048 x 4KB sectors, then the bit file will use the first 365
sectors of the flash and the software data sections can be stored
from the 366th sector (from the @ 0x16E000).

SDK provides a bootloader template which is used for
parallel NOR Flash memory. Based on Xilinx documentation
[8] and Avnet tutorial [6], we modified this template to read
from SPI Flash using the Xilinx In-System Flash (ISF) library.
The SPI drivers can be used in polled mode or interrupted
mode if interruption was enabled in the AXI Quad SPI core.

In order to create the bitstream file including configuration
data and the bootloader executable file (ELF), the following
steps are adopted:

 We modified bootloader.c, the main source file in
project, with the initialization of SPI device and ISF
library, and the update of Flash memory reads with ISF
Read commands.

 We updated the flash memory offsets for the stored
SREC applications in the blconfig.h file (figure 6).

 The linker script was updated to allow the boot loader
to be executed from FPGA BRAMs.

Fig. 6. The blconfig.h file.

Fig. 7. Program FPGA window.

Finally, we generate the configuration file with the
embedded bootloader by running the data2mem application in
command line mode. This command provides the facility to
iterate new block RAM data into a bit file without the need to
rerun Xilinx implementation tools. In conjunction with a new
ELF file and the Block RAM Memory Map (BMM) file,
data2mem command (described in [9]) updates the block RAM
initialization in a BIT file image and outputs a new bit file.
This facility is invoked as follows :

data2mem -bm my.bmm -bd code.elf -bt my.bit -o b
new.bit

Another possibility is to run the download step in SDK.
The program operation (see figure 7) will generate the new bit
file (download.bit) even if the board is not connected.

V. THE USER DATA FILE

One flash image will be used to regroup the two user data
blocks corresponding to the applications, and we chose the
hexadecimal (HEX) format. It contains only data (without
addressing) in hexadecimal format. It will not be checked by
the check sum as it is not really part of the bitstream file or
SREC file, and we may do whatever we wish.

We used a hex editor (the shareware HexEdit [10]) to
populate the data.hex file with respect for the following
specific requirements as shown in figure 8:

 Every data line must be 16 bytes long.

 Every data number must be represented in hex.

 Put synchronization word (4Bytes) at the start of each
user data block. In the example of figure 8, we used the
synchronization word 0xD1AFBFCF for the first user
data block and 0XD2AFBFCF for the second.

 Each block of data must be 8 bytes long. To use blocks
of data with variable size, we can add immediately
after the synchronization word, a word which indicates
the size of the block followed by the data. This word
will be recovered by the software application to set up
the reading data routine.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 10, 2013

112 | P a g e
www.ijacsa.thesai.org

Fig. 8. The data.hex file.

The use of the synchronization words allows storing user
data file anywhere in the SPI Flash after the software section,
and also allows each application to identify its block of user
data. Indeed, the software reads through the SPI Flash 1 Byte at
a time until it finds a 32-bit word matching the data
synchronization word. Once the data synchronization word is
found, the software recovers the Start Address of user data
block and the first 8 bytes following the synchronization word.
The size of 8 bytes is given by way of example and can be
modified depending on the application requirements.

VI. PROGRAMMING THE SPI FLASH DEVICE

To program the memory, we have to generate an MCS file
(Intel MCS-86 Hexadecimal Format) from the bitstream with
boatloader (downoald.bit), the SREC flash images
(First_application.srec and Second_application.srec), and the
user data file (data.hex).

The MCS file contains ASCII strings that define the storage
address and data file. It can be created by the PROMGen
command [11] or the iMPACT software. The figure 9
summarize the software flow for creating a MCS file.

We chose iMPACT because it provides a graphical, step-
by-step approach. The following steps are followed to create
our PROM file:

1) Launch the iMPACT GUI and create a new project

with Prepare a PROM file option.

2) In the PROM File Formatter dialog box (figure 10) :

 Step1 : select Configure Single FPGA under SPI Flash
in Storage Device type.

 Step 2 : select 64M and click on the Add Storage
Device button. The choice depends on the on board
SPI Flash memory.

 Step 3 : select a file name, directory location, and Yes
for Add Non-Configuration Data Files pull-down.

3) In the next dialog boxes :

 Add one device file by browsing to the
your_hw_platform directory and selecting the
download.bit file.

 Add the first data file First_application.srec by
indicating the start address 0x170000 (must be greater
then 0x16E000).

 Create design in Base System Builder

 Update design

 Implementation to Bitstream

Export to SDK

XPS

SDK Applications Development

Bootloader

First_application

Second_application

.bit file
.bmm file

SPI_bootloader.elf

DATA2MEM

First_application.elf

Second_application.elf

mb_objcopy -O srec download.bit

First_application.srec

Second_application.srec

iMPACT - PROMGen

boot_soft_data.mcs

data.hex

HEXEDIT

Fig. 9. Software flow for creating a MCS file.

 Add the second data file Second_application.srec by
indicating the start address 0x180000 (depends on the
size of the first data file).

 Add the third data file data.hex anywhere after the
second datafile.

4) After validating the dialog box Data File Assignment

shown in figure 11, double-click Generate File to create the

MCS file : boot_soft_data.mcs.
To detect the Spartan-6 FPGA of SP605 Evaluation Kit and

program the on board SPI Flash memory, the following steps
are followed :

 Connect the PC to the USB JTAG connector on the
SP605 board, set the mode pins for SPI Flash (M0=1,
M1=0), and turn the board power on (see figure 12).

Synchronization word

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 10, 2013

113 | P a g e
www.ijacsa.thesai.org

Fig. 10. PROM File Formatter dialog box.

Fig. 11. Data File Assignment dialog Box.

 In iMPACT interface, double-click on the Boundary
Scan flow, right-click on the Boundary Scan windows,
and select Initialize Chain.

 Right-click on the Xilinx device detected, and select
Add SPI/BPI Device. Browse to directory location
selected later in the PROM File Formatter dialog box,
and select the generated MCS file.

 In the Select Attached SPI/BPI dialogue box, select the
on board SPI Flash memory (W25Q64BV/CV).

 To start the programming with the generated MCS file
(boot_soft_data.mcs), right-click on the Flash device
and select Program.

VII. RESULTS AND DISCUSSIONS

A serial terminal program, such as Tera Term or Hyper
Terminal, must be set to view the output of the bootloader and
the test applications.

Make sure before starting the test that, the SPI mode is set,
the DIP switches is set at 0x0001 (see figure 13) to run the first
application test or 0x1000 to run the second application test.

Press the PROG button (see figure 12) every time we want
to re-configure the FPGA. The figure 14 shows running results
of the boot loader :

Fig. 12. Configuration mode pins and PROG button.

Fig. 13. DIP switches setting for First application test.

 After the FPGA configuration, the bootloader
downloads one of the test applications in DDR3
SDRAM memory (depending of DIP switches state).

 The execution of each test application includes
peripheral tests, LEDs blinking, and recovery of the
specific user data. The start address of application data
section and user data block is recovered and printed.

If the DIP switches setting differ from 0x0001 and 0x1000
values, a message is printing to indicate no SREC file to load.

Mode pins

PROG button

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 10, 2013

114 | P a g e
www.ijacsa.thesai.org

Fig. 14. Terminal Window showing test running

VIII. CONCLUSION AND FUTUR WORKS

This paper demonstrates a method concerning
the optimization of the SPI flash memory in FPGA designs that
incorporate Embedded Software Systems using Microblaze. It
is simple to implement and can be used in any embedded
system with limited memory resources.

Successful achievement of this work will encourage us to
use an SPI Flash memory as mass memory of our on-board
computer (for nano-satellite) that will take an SRAM-FPGA as
central processor. The embedded platform can be enriched by
proposing a fallback and multiboot technique to create a
multiple embedded designed systems (multiple configuration
sections), always by using a single SPI Flash memory.

REFERENCES

[1] Xilinx Company “Spartan-6 FPGA Configuration User Guide” UG380
(v2.5) January 23, 2013. [internet] Available at

http://www.xilinx.com/support/documentation/user_guides/ug380.pdf

[2] Xilinx Company “MicroBlaze Processor Reference Guide” UG081
(v13.4) January 18, 2012. [internet] Available at

http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_4/

mb_ref_guide.pdf

[3] Xilinx Company “Spartan-6 Family Overview” DS160 (v2.0) October
25, 2011. [internet] Available at

http://www.xilinx.com/support/documentation/data_sheets/ds160.pdf

[4] Xilinx Company “Embedded System Tools Reference Manual EDK”

UG111 (v13.4) January 18, 2012. [internet] Available at

http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_4/e

st_rm.pdf

[5] Casey Cain “FPGA Configuration from Flash PROMs on Spartan-3E
1600E Board” XAPP978 (v1.2) November 5, 2010.

[6] Avnet Reference Design "Creating a Microblaze SPI Flash Bootloader”

Version 13.2.01 September 22, 2011.

[7] Xilinx Company “LogiCORE IP AXI Quad Serial Peripheral Interface
(AXI Quad SPI) V1.00a” DS843 October 19, 2011.

http://www.xilinx.com/support/documentation/ip_documentation/axi_qu

ad_spi/v1_00_a/ds843_axi_quad_spi.pdf

[8] Xilinx Company “OS and Libraries Document Collection” UG643 July
27, 2012. [internet] Available at

http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_2/
oslib_rm.pdf

[9] Xilinx Company “Data2MEM User Guide” UG437 (v2.0) April 04,

2007. [internet] Available at

http://www.xilinx.com/itp/xilinx10/books/docs/d2m/d2m.pdf

[10] http://www.hexedit.com/

[11] Xilinx Company “Command Line Tools User Guide” UG628 (v 13.4)
January 18, 2012. [internet] Available at

http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_1/

devref.pdf

