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Abstract— In the real traffic situations, vehicle would make a 

braking as the response to avoid collision with another vehicle or 

avoid some obstacle like potholes, snow, or pedestrian that 

crosses the road unexpectedly. However, in some cases the 

spontaneous-braking may occur even though there are no 

obstacles in front of the vehicle. In some country, the reckless 

driving behaviors such as sudden-stop by public-buses, 

motorcycle which changing lane too quickly, or tailgating make 

the probability of braking getting increase. The new aspect of this 

paper is the simulation of braking behavior of the driver and 

presents the new Cellular Automata model for describing this 

characteristic. Moreover, this paper also examines the impact of 

lane-changing maneuvers to reduce the number of traffic 

congestion that caused by spontaneous-braking behavior of the 

vehicles. 
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I. INTRODUCTION  

The study of traffic flow has received a lot of attention for 
the past couple of decades. The simulations of traffic 
congestion become the most important aspect in the field of 
traffic analysis and modeling. Traffic congestion can be 
defined as the saturation condition of road network that occurs 
as increased traffic volume or interruption on the road, and is 
characterized by slower speed, longer trip times, and increased 
vehicular queuing. The investigated situations in the real 
traffic condition are those of traffic congestion caused by some 
main reason, such as insufficient road capacity, incidents, 
work zones (e.g., road maintenance or constructions near the 
road that requires space), weather events (e.g., in the case of 
rain or snow) which can hampers visibility therefore a driver 
have to slowdown its vehicle to compensate, or emergencies 
situations (e.g., hurricanes or severe snowstorms). However, in 
this paper, we concern to investigate the effect of individual 
braking behavior of the driver towards traffic congestion. 

In more detail, this paper interests to describe and 
reproduce the characteristic of spontaneous-braking 
probability and its effects to the traffic behavior. In the real 
traffic situations, vehicle would make a braking as the 
response to avoid collision with another vehicle or avoid some 
obstacle like potholes, snow, or pedestrian that crosses the 

road unexpectedly. However, in some cases the spontaneous-
braking may occur even if there are no obstacles in front of the 
vehicle. In some country, the reckless driving behaviors such 
as sudden-stop by public-buses, motorcycle which changing 
lane too quickly, or tailgating make the probability of braking 
getting increase.  

One of the famous microscopic models for the simulation 
of road traffic flow is Cellular Automata (CA) model. In 
comparison with another microscopic model, the CA model 
proposes an efficient and fast performance when used in 
computer simulation [18]. CA is a dynamic model developed 
to model and simulates complex dynamical system. The set of 
CA rules may illustrate complex evolution patterns, such as 
time and space evolution in a system. Those evolutions can be 
shown just by use simple rules of CA. Furthermore, the 
utilization of CA successfully explains the phenomenon of 
transportation. These so-called traffic cellular automata (TCA) 
are dynamical systems that are discrete in nature and powerful 
to capture all previously mentioned basic phenomena that 
occur in traffic flows [18]. The one dimensional cellular 
automata model for single lane freeway traffic introduced by 
Nagel and Schreckenberg (NaSch) [1] is simple and elegant 
that captures the transition from laminar flow to start-stop 
waves with increasing vehicle density. The space of CA is 
discrete and consists of a regular grid of cells, each one of 
which can be in one of finite number of possible states. The 
number and array of cells in the grid depends on the specific 
transportation behavior that is described. The simplicity of the 
NaSch model has prompted the use of it for studying many 
traffic situations.  

This paper presents a new Cellular Automata model for 
describing the phenomena of spontaneous-braking behavior 
and lane-changing character in traffic flow. In this model, we 
investigate the effect of spontaneous-braking probability and 
lane-changing maneuver in two-lane highway with one-way 
traffic character. This proposed model extends the NaSch 
model that first introduced CA for traffic simulation. The set 
of rules in NaSch model are modified to better capture and 
describe the behavior of the driver while making spontaneous-
braking and lane-changing maneuver in traffic flow. The base 
deceleration rule of NaSch model is applicable only to 
stationary vehicles, which is vehicles that are blocked by the 
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leading vehicle in the previous time step. This rule is not 
applicable to two conditions, in the condition of those vehicles 
which are stopped due to spontaneous-braking behavior, and 
in the two-lane highway that allows vehicle to make lane-
changing maneuvers. Compared with the original NaSch 
model, this proposed model exhibits spontaneous-braking 
probabilities effect combined with acceleration, deceleration, 
and lane-changing maneuvers effects. Though it is well known 
that spontaneous-braking is extremely reducing the local speed 
of vehicles, the impact on the global system has not been 
studied. 

This paper uses a two-lane highway character with a 
periodic boundary condition. The periodic boundary approach 
has been used to conserve the number of vehicles and the 
stability of the model. The goal of this paper is to analyze the 
phenomena of spontaneous-braking behavior in traffic flow 
then propose a new cellular automata model to describing this 
phenomena. Moreover, this paper also investigates the impact 
of lane-changing maneuvers towards traffic congestion that is 
caused by spontaneous-braking behavior. 

This paper is organized as follows. Some studies relating 
with CA based traffic flow is quick reviewed in Section 2. 
Section 3 presents a short description of the theoretical aspect 
of traffic CA model. Section 4 explains about the proposed 
model. Section 5 contains simulation process and the results in 
the form of fundamental diagrams and space-time diagrams. 
Finally, Section 6 contains conclusion and a summary of 
findings. 

II. RELATED RESEARCH WORKS 

The one dimensional cellular automata model for single 
lane freeway traffic introduced by Nagel and Schreckenberg 
(NaSch) [1] is a probabilistic CA model that captures the 
transition from laminar flow to start-stop waves with 
increasing vehicle density. NaSch model update the state of 
cells synchronously in discrete time steps. There is a finite set 
of local interaction rules. This set of rules manages the new 
state of a cell by taking into account the actual state of the cell 
and its neighbor cells. This local interaction allows capture 
micro-level dynamics and propagates it to macro-level 
behavior. This single-lane system consists of a one-
dimensional grid of L sites with periodic boundary conditions. 
A site can either be occupied, or empty by one vehicle with 
integer velocity between zero and vmax. The velocity of each 
vehicle is equivalent to the number of sites that a vehicle 
advances in one update, if there is no obstacle ahead. Each of 
vehicles moves only in one direction. Refer to the Ricket et. al 
[6], they outlined the rules of single-lane model. The index i 
denotes the number of vehicle, x(i) is the position of vehicle i, 
v(i) is the vehicle’s current velocity, vd(i) is the maximum 
speed, pred(i) is the number of preceding vehicle, gap(i) = 
x(pred(i)) – x(i) – 1 indicates the width of the gap to the 
predecessor. The rules are applied to all vehicles at the 
beginning of each time step by simultaneously, which mean 
using parallel update. Then the vehicles are advanced 
according to their new velocities [6]. 

The parallel update rules are the following: 

• v(i) ≠ vd (i) ⇒v(i) := v(i) +1   (1) 

• v(i) > gap(i) ⇒v(i) := gap(i)   (2) 

• v(i) > 0⇒ rand < pd (i)⇒v(i) := v(i) −1  (3) 

 
The first rule represents the linear acceleration of each 

vehicle which is not at the maximum speed to accelerate its 
speed by one site (cell) until the vehicle has reached its 
maximum velocity vd. Second rule ensures that vehicles 
having predecessors in their way slowdown in order not to run 
into them. In this rule, all vehicles are checked for their 
distance between the vehicle and its predecessor. If the 
distance is smaller than its speed then the speed is reduced to 
the number of empty cells between them to avoid the collision. 
Third rule consider the stochastic noise parameter.  

The probability pd is the probability number of each car to 
reduce its speed by one unit (cell) per time step. This NaSch 
model encouraged another study toward traffic flow conditions 
[2]-[7]. Ricket, et al. [8] investigated a simple model for two-
lane traffic. Their model introduced the lane changing 
behavior for two lanes traffic. It was found that the 
fundamental diagram for each lane is asymmetric but the 
maximum is shifted towards large values of vehicular density 
ρ (ρmax > 1/2 ). They proposed a symmetric rule set where the 
vehicle changes lanes if the following criteria are fulfilled:  

• vmove > gapsame → vmove = min (vn + 1, vmax) 

• gaptarget > gapsame 

• gapback ≥ vmax 

 
The variable gapsame, gaptarget, and gapback denote the 

number of unoccupied cells between the vehicle and its 
predecessor on its current lane, and between the same vehicle 
and its two neighbor vehicles on the desired lane, respectively. 

The advance analysis about lane-changing behavior has 
been done, which includes symmetric and asymmetric rules of 
lane-changing [9-14]. Symmetric rule can be considered as 
rules that threat both lanes equally, while asymmetric rule can 
be applied in special characters highway, like German 
highways simulation [15], where lane changes are dominated 
by right lane rather than left lane. Another studies focus on the 
effect of lane-changing behavior on a two-lane road in 
presence of slow vehicle and fast vehicle [13], [16-18]. While 
the NaSch model could reproduce some of basic phenomenon 
observed in real traffic situations such as the start-stop waves 
in congested traffic, but it has been observed that the base 
NaSch model lacks the ability to produce other more realistic 
traffic patterns [19]. 

In this paper, we consider two parameters in traffic 
behavior; those are the spontaneous-braking behavior and 
lane-changing maneuver that occurs in the real traffic 
situation. This proposed model using two-lanes traffic and also 
adopts the symmetric lane-changing rules.  

III. TRAFFIC CELLAR AUTOMATA MODEL 

Cellular automaton (CA), at the basis of the model 
presented in this paper, is a discrete model studied in 
computability theory, mathematics, physics, complexity 
science, theoretical biology and microstructure modeling. 
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Currently, various fields have been using CA models to 
model the phenomena of their system, such as vehicular traffic 
flow, pedestrian behavior, escape and panic dynamic, 
collective behavior, and self-organization. CA model uses a 
simple approach for modeling and simulation of complex 
dynamical systems. The behavior of complex systems can be 
described by considering at the local interactions between their 
elementary parts. CA decomposes a complex phenomenon 
into a finite number of elementary processes. 

The CA model consists of two components, a cellular 
space and a set of state. The state of a cell is completely 
determined by its nearest neighborhood cells. All 
neighborhood cells have the same size in the lattice. Each cell 
can either be empty, or is occupied by exactly one node. There 
is a set of local transition rule that is applied to each cell from 
one discrete time step to another (i.e., iteration of the system). 
This parallel updating from local simple interaction leads to 
the emergence of global complex behavior. 

The Nagel-Schreckenberg (NaSch) model is one of the 
theoretical CA models for the simulation of freeway traffic 
[1]. This NaSch model known as the simple CA model for 
illustrate road traffic flow that can reproduce traffic 
congestion, like slow down car behavior in a high-density road 
condition. This model shows how traffic congestion can be 
thought of as an emergent or collective phenomenon due to 
interactions between cars on the road, when the density of cars 
is high and so cars are close to each on average. The NaSch 
model also known as stochastic traffic cellular automaton 
(STCA) because it included a stochastic term in one of its 
rules. Like in deterministic traffic CA models (e.g., CA-184 or 
DFI-TCA), this NaSch model contains a rule that reflect 
vehicle increasing speed and braking to avoid collision. 
However, the stochasticity term also introduced in the system 
by its additional rule. In one of its rules, at each time-step t, a 

random number ξ(t) ∈  [0,1] is generated from a uniform 

distribution. This random number is then compared with a 

stochastic noise parameter p ∈ [0,1]. For it is based on this 

probability p then a vehicle will slow down to v(i) – 1 
cells/time-step. According to Nagel and Schreckenberg, the 
randomization rule captures natural speed fluctuations due to 
human behavior or varying external conditions [20].  

IV. PROPOSED METHOD 

This paper extends a probabilistic CA model that 
introduced by Nagel-Schrekenberg [1] for the description of 
single-lane highway traffic. While the original NaSch model 
uses a single lane that is represented by a one-dimensional 
array of L sites (cells), this paper considers two-lane highway 
with unidirectional traffic character in periodic boundaries 
condition. The two-lane model is needed to describe the more 
realistic traffic condition which has several types of vehicles 
with multiple desired velocities. In single-lane model, the 
vehicles with multiple desired velocities just resulting in the 
platooning effect with slow vehicle being followed by faster 
ones and the average velocity reduced to the free-flow velocity 
of the slowest vehicle [8]. 

The simulation model in this paper presents two additional 
elements. The first additional element is spontaneous-braking 

parameter. This element is needed to illustrate the probability 
of spontaneous-braking behavior of the vehicle that occur in 
the real traffic situation. The concept of spontaneous-braking 
probability is introduced for the description of the spontaneous 
reaction of the drivers while making a spontaneous-braking 
behavior. This reaction can be caused by several things e.g., as 
the response to avoid collision with another vehicles, the 
reckless driving behaviors such as sudden-stop by public-
buses, motorcycle which changing lane too quickly, or 
tailgating. Those behaviors make the probability of braking 
getting increase.  

In original NaSch model [1], there is no rule accommodate 
the spontaneous-braking behavior. NaSch model introduced a 

stochastic noise parameter p ∈  [0,1] that can make a 

slowdown vehicle to v(i) – 1 cells/time-step. However, in real 
traffic situations this rule is difficult to describe the nature of 
the braking, especially on spontaneous-braking behavior of the 
vehicle. In our opinion, the value of braking is a variable 
number and the spontaneous-braking represent the extreme 
value of a braking behavior. Thus, the slow-down rule of 
vehicle v(i) – 1 cells/time-step cannot describe the 
characteristic of spontaneous-braking. This paper introduces a 
new additional rule to represent the behavior of spontaneous-
braking by using a spontaneous-braking probability Pb: v(i) → 
v(i) − bx . Here bx denotes the characteristic of driver while 
make a braking. The value of bx is equal or less than the 
current speed v(i). This rule takes into account the dynamic 
characteristic of the driver while make a braking of its car. 
Already mentioned before, a two-lane unidirectional highway 
model with periodic boundary system is used in this 
computational model. Refer to the discrete NaSch model, a 
one-dimensional chain of L cells of length 7.5 m represents 
each lane. There are just two possibility states of each cell. 
Each cell can only be empty or containing by just one vehicle. 
The speed of each vehicle is integer value between v = 0, 1, . . 
., vmax. In this model, all vehicles are considered as 
homogeneous then have the same maximum speed vmax. In 
order to investigate the effect of spontaneous-braking behavior 
then the state of a road cell at the next time-step, from t to t + 
1 is dependent on the states of the direct frontal neighborhood 
cell of the vehicle and the core cell itself of the vehicle. The 
state of the road cells can be obtained by applying the 
following rules to all cells (vehicles) by parallel updated: 

Acceleration: v(i) →min(v(i) +1, vmax )   (4) 

Deceleration: v(i)→min(v(i), gap(i))   (5) 

Spontaneous braking probability pb: v(i) →v(i) − bx  (6) 

Driving: x(i)→x(i) + v(i)     (7) 

 
As this simulation model try to investigate the effect of 

spontaneous-braking behavior on traffic flow then this model 
deliberately eliminates the randomization rule of original 
NaSch (v(i) – 1 cells/time-step). Here for the reason to avoid 
the speed reduction of vehicles caused by this rule that could 
influence our simulation results. The variable gap(i) indicates 
the distance between a vehicle x(i) and its predecessor 

x((i)+1). vmax represents the maximum speed of the vehicle. 
The second additional element is lane-changing parameter. 

By using two-lane highway model and applying multiple 
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desired velocity types, then this paper also accommodates the 
lane-changing maneuvers of vehicles. In the real traffic 
situation, driver tends to make a lane-changing maneuver 
while encounter traffic congestion along its lane. This paper 
also intends to evaluate the impact of lane-changing 
maneuvers towards the traffic congestion that caused by 
spontaneous-braking behavior of the driver. In this model, the 
lane-changing maneuver is analogous as the movement of 
liquid. There is a different from the lane-changing model of 
Ricket et al. In this model, a vehicle would consider changing 
its lane only if the vehicles “see” another vehicle on its cell 
ahead and do so if possible. It means, as long as there is a cell 
free ahead on their lane then the vehicles would still remain on 
their lane. This lane-changing model will preserve the 
deceleration rule in our model that is showed in equation (5). 

 

Figure 1. Schematic diagram of a lane-changing operation 

The lane-changing rule is applied to vehicles to change 
from right lane to left lane and conversely. Vehicles are only 
move sideways and they do not advance. Fig. 1 shows the 
schematic diagram of lane-changing operation. A vehicle 
changes to the next lane if all of the following conditions are 
fulfilled: 

• Cellnext > 0     (8) 

• Celltarget = 0     (9) 

• x(cellsback ) + v(cellsback )
t+1

 ≠ cellt arget   (10) 

 
Cellnext, Celltarget, and Cellback are the parameters that 

inform the state of one cell ahead, state of next cell, and state 
of cells behind on the other lane, respectively. If one cell is 
unoccupied or free-cell then its state is 0. In the real traffic 
situation, a driver also has to look back on the other lane and 
estimate the velocity of another cars-behind to avoid a 
collision. Equation (10) accommodates the driver behavior to 
estimate the velocity of vehicles before change the lane. 

V.  SIMULATIONA DN RESULTS 

The simulation starts with an initial configuration of N 
vehicles, with random distributions of positions on both lanes. 
This simulation use the same initial velocity for all vehicle vmin 
= 0 and the maximum vehicle speed has been set to vmax = 5 
cell/time-step. Many simulations performed with different 
density ρ. The density ρ can be defined as number of cars N 
along the highway over number of cells on the highway L. 
During one simulation, the total number of cars on the 
highway cannot change. Vehicles go from left to right. If a 
vehicle arrives on the right boundary then it moves to the left 
boundary. Fig. 2 illustrates an environment, which exhibits a 
certain configuration. 

 

Figure 2. An environment with a certain configuration 

 

This paper divides the analysis into two stages. The first 
stage investigates the effect of spontaneous-braking on the 
traffic flow. In this simulation stage, we analyze the traffic 
flow for the spontaneous-braking probability bp = 0; 0.3; and 
0.7. The simulation was running 1000 time steps to let the 
system reaches its stable condition. The system automatically 
increase the vehicles density from minimum density ρ = 0 
until maximum density ρ = 100 percent. Once the transient 
dies out, then the data extraction was started. The data was 
analyzed using fundamental diagrams, which plot the velocity 
of vehicle vs vehicle flow vs global density.  

To show the system dynamics then the graph had written 
the last ten steps for each density before the end of simulation. 
Fig. 3 and Fig. 4 present the fundamental diagrams of this 
model. Fig. 3 shows the measurement of the average velocity v 
(t ) over all vehicles at each density. The red color, black 
color, and blue color of scatter graph present the average 
velocity in the condition with spontaneous-braking probability 
Pb = 0, Pb = 0.3, and Pb = 0.7, respectively.  

One can be observed that in the traffic without spontaneous 
braking probability, the maximum velocity 5 unit of distance 
per unit of time could be achieved in the density ρ ≤ 0.12. 
When the probability of spontaneous-braking increased then 
the critical density point that maximum velocity can be 
achieved became lower than normal condition.  

For the spontaneous-braking probability Pb = 0.3, the 
critical point of maximum velocity vmax = 5 is around ρ = 0.04. 
While in the situation that spontaneous-braking probability Pb 
= 0.7, the vehicles were very difficult to reach their maximum 
speed vmax = 5. 

 

Figure 3. Average velocity (cell/time-step) vs density (cars/highway site) 

In the phase after the critical density point of maximum 
velocity was reached, the vehicles reduced their velocity to 
synchronize with the gap between them and the vehicle ahead.  

However, in the transition phase after the critical density 
point of maximum velocity, the vehicles still maintained their 
velocity. Regarding this average velocity graph, the traffic jam 
obviously appeared when the average velocity v < 1 cell/time. 
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Figure 4. Traffic flow (cars/time step) vs density (cars/highway site) 

 
Fig. 4 illustrates the traffic flow over vehicles density for 

the spontaneous-braking probability Pb = 0, Pb = 0.3, and Pb = 
0.7, respectively. The traffic flow indicates the number of 
moving vehicles per unit of time. While the density parameter 
means the number of vehicles per unit area of the highway. As 
can be seen from the graph, there is a reduction in traffic flow 
in the presence of spontaneous-braking parameter. We also 
consider the critical density kc that appeared in each traffic 
flow. Here, the critical density means a maximum density 
achievable under free flow. In the traffic flow with Pb = 0, the 
critical density kc situated at the density ρ = 0.18.  

The critical density kc was getting lower when the 
spontaneous-braking parameter increased. Below the critical 
density kc, all vehicles can make a movement. However, in the 
density after the critical density point, not every vehicle can 
move at each time step. This critical density point also 
indicates when the traffic congestion started to happen. To get 
an intuitive feel for the dynamics, we provide a set of space-
time diagrams in Fig. 5, Fig. 6, and Fig. 7 for various density 
values.  

The horizontal axis represents space and vertical axis 
represents the time. In order to get data to analyze, we 
simulate this model for density ρ = 0.25; 0.50; and 0.75 that 
represent light traffic, moderate traffic, and heavy traffic 
situations.  

For density ρ = 0.25, it can be seen that the spontaneous-
braking behavior has given a significant impact to produce 
traffic congestion (Fig. 5). The single vertical line which is 
shown in these time-space diagrams represents a stationary 
vehicle that is making a spontaneous-braking behavior. In the 
traffic with density value ρ = 0.50, there is a moderate impact 
of the spontaneous-braking behavior on the traffic congestion. 

It can be seen that before the spontaneous-braking 
parameter was applied, the congestion already occurred on the 
traffic (Fig. 6). While in Fig. 7, the effect of spontaneous-
braking on traffic congestion just a slightly impact is shown. 
That because in density value ρ = 0.75, the traffic congestion 
already appeared although in the condition without 
spontaneous-braking behavior. 

 

(a)  

(b)  

(c)  

Figure 5. Space-time diagram for density ρ = 0.25 and Pb = 0 (a), Pb = 0.3 
(b), and Pb = 0.7 (c); without lane-changing maneuvers 
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(a)  

(b)  

(c)  
Figure 6. Space-time diagram for density ρ = 0.50 and Pb = 0 (a), Pb = 0.3 

(b), and Pb = 0.7 (c); without lane-changing maneuvers  
 
The lane-changing effect on traffic congestion is discussed 

from here. As shown before that the spontaneous-braking 
behavior can contribute to the traffic congestion. 

(a)  

(b)  

(c)  
Figure 7. Space-time diagram for density ρ = 0.75 and Pb = 0 (a), Pb = 0.3 (b), 

and Pb = 0.7 (c); without lane-changing maneuvers 

 
Therefore, in this section we evaluate the effect of lane-

changing to reduce the congestion level. This lane-changing 
model was applying the equations (8), (9), and (10).  
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In this simulation, the vehicles can look back and estimate 
the situation along 5 cells behind on the other lane before 
make a lane-changing. We provide a set of space-time 
diagrams in Fig. 8, Fig. 9, and Fig. 10 for the density values ρ 
= 0.25; 0.50; and 0.75.  

(a)  

(b)  

(c)  

Figure 8. Space-time diagram for density ρ = 0.25 and Pb = 0 (a), Pb = 0.3 (b), 
and Pb = 0.7 (c); with lane-changing maneuvers 

(a)  

(b)  

(c)  
Figure 9. Space-time diagram for density ρ = 0.50 and Pb = 0 (a), Pb = 0.3 (b), 

and Pb = 0.7 (c); with lane-changing maneuvers 
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(a)  

(b)  

(c)  

Figure 10. Space-time diagram for density ρ = 0.75 and Pb = 0 (a), Pb = 0.3 
(b), and Pb = 0.7 (c); with lane-changing maneuvers. 

 
The comparative graph shows that for the traffic density ρ 

< 0.75, the lane-changing maneuvers have given a good 
impact to reduce the congestion level. However, in all 
spontaneous-braking parameter value condition, the result 

shows that there is no significant impact that is contributed by 
lane-changing maneuver. 

VI. CONCLUSION 

In this work, we simulate the braking behavior of the 
driver and present the new Cellular Automata model for 
describing this characteristic. The original NaSch model has 
been modified to accommodate the parameter of spontaneous-
braking probability. This spontaneous-braking probability rule 
captures the natural of braking behavior due to human 
behavior. This simulation shows that the traffic congestion can 
be caused not only by the road capacity condition but also by 
driver behavior. Moreover, we also evaluate the effect of lane-
changing to reduce the congestion that is caused by the 
parameter of spontaneous-braking probability. 
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