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Abstract— In this paper, we have developed a modification to the 

Feistel cipher by taking the plaintext in the form of a pair of 

matrices and introducing a set of functions namely, substitute, 

shifting of rows, mixing of columns and XOR operation with a 

key. Further we have supplemented this process by using another 

function called shuffling at the end of each round of the iteration 

process. In this analysis, the cryptanalysis clearly indicates that 

the strength of the cipher is quite significant and this is achieved 

by the introduction of the aforementioned functions. 
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I.  INTRODUCTION  

The study of the Feistel cipher has been a fascinating 
fundamental area in the development of block ciphers in 
cryptography. In the recent years, we have offered several 
modifications [1-4] to the classical Feistel cipher by taking the 
plaintext in the form of a pair of matrices. In all these 
investigations, we have made use of the multiplication with a 
single key matrix or the multiplication with a pair of key 
matrices as a fundamental tool in the development of the 
cipher. This is associated with the mod operation. Further, we 
have introduced some operations such as mixing, permutation, 
blending or shuffling in order to achieve confusion and 
diffusion, so that, the strength of the cipher becomes 
significant.  

In the present investigation, our objective is to study a 
modification of the Feistel cipher, wherein we use the 
fundamental operations such as substitution, shifting of rows, 
mixing of columns, XOR operation and Shuffling. It may be 
noted here that the operations, substitution, shifting of rows 
and mixing of columns are very well utilized in Advanced 
Encryption Standard (AES) [5]. Our interest here is to develop 
a strong block cipher which exceeds, in strength, almost all the 
other ciphers available in the literature. 

      In what follows we present the plan of the paper. In 
section 2, we deal with the development of the cipher and 
present the flowcharts and algorithms required in this analysis. 
In section 3, we mention an illustration of the cipher and 
describe the avalanche effect. We study the cryptanalysis in 

section 4. Finally, in section 5, we discuss the computations 
and draw conclusions. 

II. DEVELOPMENT OF THE CIPHER 

Consider a plaintext P containing 2m
2
 characters. On using 

the EBCIDIC code, the characters occurring in the plaintext 
can be represented in terms of decimal numbers wherein each 
number lies in [0 - 255]. Then, these numbers can be written in 
the form of a pair of square matrices P0 and Q0, wherein each 
one is of size m.  

Let us consider a key matrix K, where K is a square matrix 
whose size is m.  

The flowcharts depicting the encryption and the decryption 
are given below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig 1. The process of Encryption 

  

Qi-1 = Mix (Qi-1) 

Qi-1 = Shift (Qi-1) Pi-1 = Shift ( Pi-1 ) 

Pi-1 = Mix ( Pi-1 ) 

Pi-1 =  Pi-1         K 

C = Pr   Qr  

for i = 1 to r 

Pi , Qi 

Pi-1 = Sub ( Pi-1 ) Qi-1 = Sub ( Qi-1 ) 

Pi-1  Qi-1  

Read P0, Q0 , K 

Qi-1 =  Qi-1        K 

( Pi , Qi ) = Shuffle ( Pi-1, Qi-1 ) 
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Fig 2. The process of Decryption 

Now we write the algorithms for the processes encryption 
and decryption as given below. 

A. Algorithm for Encryption 
 

1. Read P, K 

2. P0 = Left half of P. 

3. Q0 = Right half of P. 

4. for i = 1 to r 

      begin 
 

         Pi-1 = Sub (Pi-1) 
 

         Pi-1 = Shift (Pi-1) 

         Pi-1 = Mix (Pi-1) 

         Pi-1 = Pi-1       K 

        Qi-1 = Sub (Qi-1) 

        Qi-1 = Shift (Qi-1) 

        Qi-1 = Mix (Qi-1) 

        Qi-1 = Qi-1       K 
 

        (Pi , Qi) = Shuffle ( Pi-1, Qi-1 ) 
 

       end 

5. C = Pr   Qr /*   represents concatenation  */ 
 

6. Write(C) 

B. Algorithm for Decryption 

1. Read C, K 

2. Pr = Left half of C. 

3. Qr = Right half of C. 

4. for i = r to 1 

      begin 

         (Pi-1 , Qi-1) = IShuffle ( Pi, Qi ) 

         Pi-1 = Pi-1       K 

         Pi-1 = IMix (Pi-1) 

         Pi-1 = IShift (Pi-1) 

         Pi-1 = ISub (Pi-1) 

         Qi-1 = Qi-1      K 
 

         Qi-1 = IMix (Qi-1) 

               Qi-1 = IShift (Qi-1) 
 

              Qi-1 = ISub (Qi-1)  
 

       end 

5. P = P0   Q0 /*   represents concatenation */ 
 

 

6. Write (P) 

Let us now explain the basic ideas underlying in the 
functions Sub ( ), Shift ( ), Mix ( ), used for substitution, 
shifting of rows, mixing of columns respectively. 

Firstly, Let us focus our attention on the substitution 
process involved in the function Sub (  ). 

Consider the EBCIDIC code which can be written in the 
form a matrix given by 

E (i, j) = 16*(i-1) + (j–1), i = 1 to 16 and j = 1 to 16          
(2.1) 

  All these numbers can be placed in the form of a table. 
Let us arrange these numbers, which are lying in the 

interval [0-255], in a random manner.  

We represent these numbers in the hexadecimal notation. 
All these numbers can be written in the form of a table given 
below (table 2). 

In the encryption process, when we come across a number 
lying in   [0-255], we will replace it by the corresponding 
number in the substitution table. For example, if we come 
across the number 70, in the process of encryption, this will be 
converted into hexadecimal number as 46. Then, 70 will be 
replaced by the number which is occurring in the 4

th
 row, 6

th
 

column of the substitution table, i.e by 5A ( = 90 in decimal 
notation).  This is the process of substitution. Keeping the 
EBCIDIC code matrix and the substitution table in view, we 
form the inverse substitution table which is given in Table 2.  

The inverse substitution table will be utilized while 
carrying out the decryption process and it is denoted by 
function     ISub ( ). 

 

  

Read Pr, Qr, , K 

Pi-1 = IShift ( Pi-1 ) Qi-1 = IShift (Qi-1) 

Pi-1 = IMix ( Pi-1 ) 

P = P0   Q0  

for  i = r  to  1 

Pi-1 , Qi-1 

Qi-1 = IMix ( Qi-1 ) 

Pi-1 =  Pi-1         K Qi-1 =  Qi-1        K 

( Pi-1 , Qi-1 ) = IShuffle ( Pi, Qi ) 

Pi -1  Qi -1  

Qi-1 = ISub ( Qi-1 ) Pi-1 = ISub ( Pi-1 ) 
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Table 2. Inverse Substitution Table 
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Now let us see the process of shifting involved in the 
function Shift ( ), during the encryption process we come 
across plaintext Pi-1 and Qi-1 in the process of iteration. As Pi-1 
is a square matrix of size m, it can be written in the form 

 

                    p11     p12     p13    ………      p1m 

 

                    p21     p22     p23    ………      p2m 

 

                    p31     p32     p33    ………      p3m 

 

 

 

                    pm1    pm2    pm3    ………      pmm 

 
On converting each decimal number in (2.4) into its binary 

form, we get 
 

           p111p112…...p118     p121p122…….p128     ……   p1m1p1m2……p1m8 

 

           p111p112…...p118     p121p122…….p128     ……   p1m1p1m2……p1m8 

 

           p111p112…...p118     p121p122…….p128     ……   p1m1p1m2……p1m8 

 

 

 

 

 

 

           p111p112…...p118     p121p122…….p128     ……   p1m1p1m2……p1m8 

 
Here each row contains 8m binary bits. In the process of 

shifting, we offer a right shift of 4 bits in the first row, 12 bits 
in the second row, 20 bits in the third row  and in general,  

4 + 8 * (i-1) bits right shift in the i
th

 row. 

This process is carried out till we exhaust all the rows. It 
may be noted here that IShift ( ) denotes the reverse process of   
Shift ( ).  

In this, the binary bits are obviously given a left shift in an 
appropriate manner. 

To have a clear insight into the mixing process denoted by 
the function Mix ( ), let us consider again the matrix Pi-1, 
which is represented in the form (2.5).  

Let us restrict our attention only to a plaintext matrix, 
wherein, m=4. This can be written in the form given below 

 
          p111 p112……p118    p121 p122……p128 …… p141 p142….p148 

 

          p211 p212……p218    p221 p222……p228 …… p241 p242….p248 

                                                                               
          p311 p312……p318    p321 p322……p328 …… p341 p342….p348 

 
          p411 p412…...p418     p421 p422…...p428 …… p441 p442….p448 

 
This has 4 rows and 32 columns. On concatenating the 

binary bits of the 1
st
 column and the 17

th
 column we get a 

string of binary bits, which can be converted into a decimal 
number. This can be considered as new p11.  

On considering the binary bits of the 2
nd

 column and the 
18

th
 column and concatenating them, we get another decimal 

number which will be called as p12.  

On adopting the same process till we exhaust all the 
columns taken in pairs, we get the decimal numbers which 
correspond to the other elements of the matrix written in the 
row wise order. Thus we have, the new plaintext matrix, 
which is obtained after the completion of mixing. Imix ( )  is 
the reverse process of Mix ( ). 

For a detailed discussion of the function shuffle ( ), 
wherein we are shuffling the columns of two matrices, we 
refer to [4]. 

III. ILLUSTRATION OF THE CIPHER 

Consider the plaintext given below 

My dear young lady! We both are well qualified. You have 
done your B.Tech and I have completed my M.S, where is the 
problem! We can fly anywhere. Why your father and mother 
are not accepting our marriage. We both belong to the same 
cast, we both are farmers. What is the objection of your father 
and your mother, are they having any thinking regarding my 
financial status? We are having as much landed property as 
your father is having. My father and your father both are well 
trained seasonal politicians. I wonder why your father is not 
accepting and why your mother is not accepting. Our marriage 
must happen soon. Yours loving Mr.X    (3.1) 

Let us focus our attention on the first 32 characters of the 
plaintext. This is given by  

My dear young lady! We both are       

On using EBCIDIC code, we get the plaintext matrix P in 
the form      

 

                   77    121  32    100  101   97  114   32   

 

                   121  111  117  110  103   32  108   97  

  

                   100  121  33    32     87  101   32    98   

 

                   111  116  104  32     97  114  101   32   

 
This can be written in the form of a pair of matrices given 

by  

 

                                77    121    32      100 

 

                                121    111    117    110   

 

                                100    121    33      32 

 

                                111    116    104    32 

        
  

(2.6) 

(3.2) P = 

(3.3) 
P0 = 

(2.4) 

: 

: 

: 

: 
: 

: 

: 

: 

: 

: 

: 

: 

: 

: 

: 

: 

: 

: 

: 

: 

(2.5) 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

            Vol. 3, No.8, 2012 

 

27 | P a g e  

www.ijacsa.thesai.org 

and 

  

                           101     97     114     32   

 

                           103     32     108     97 

 

                           87   101       32     98 

 

                           97    114    101     32 

 
Let us take the key matrix K in the form 

 

                         45        128     192      53 

 

                         133      200     150      16 

 

                         100      150      33       120 

 

                         13        189     164      55 

 
On applying the encryption algorithm, given in section 2, 

we get the ciphertext C in the form 

 

          51     145   164    146    108   237   147   173    

 

          155   18     82      72      85     155   19     71    

 

          182   102   90      237    150   142   218   60    

 

          11     150   219    226    237   177   36     100 
 

 
On using the decryption algorithm on (3.6), we get back 

the original plaintext P given by (3.2). 

Let us now study the avalanche effect which throws some 
light on the strength of the cipher.  

On changing the first row, first column element of P0, from 
77 to 76,  we get a 1 bit change in the plaintext. On applying 
the encryption algorithm on the modified plaintext, keeping up 
the key as it is, we get the ciphertext C in the form  

 

           218   88     129   219   201   58     54   101  

 

           157   209   7       186   109   153   44   75  

   

           219   120   243   158   95     55     38   117 

 

           43     233   147   229   81     38   133   187   

 
On comparing (3.6) and (3.7), after converting them into 

their binary form, we notice that they differ by 128 bits out of 
256 bits. This indicates that the cipher is quite good from the 
view point of its strength.  

Let us now consider a one bit change in the key. This is 
achieved by changing first row, first column element of the 
key K, given by (3.5), from 45 to 44. 

Now on using the modified key and applying the 
encryption algorithm, keeping the plaintext as it is, we get the 
cipher text C in the form 

 

                   79     149   68    154    22   239   105   98   

 

                   232   131   221   63     57   229   243   114    

 

                   103   82     190   152   14   222   73     209   

 

                   179   44     237   153   44   75     219   120 

 
Now on comparing (3.6) and (3.8), after converting both 

into their binary form, we find that these two ciphertexts differ 
by 134 bits out of 256 bits. 

This also shows that, the strength of the cipher is expected 
to be significant. 

IV. CRYPTANALYSIS 

In cryptography, determination of the strength of the 
cipher is a very important aspect. In the literature of 
cryptography, it is well known that the cryptanalysis can be 
carried out by the following approaches.  

1. Ciphertext only attack ( Brute force attack ) 

2. Known plaintext attack 

3. Chosen plaintext attack  

4. Chosen ciphertext attack 

As William Stallings [6] has pointed out that every cipher 
must be designed so that it withstands the first two attacks at 
least. 

Let us now consider the brute force attack.  

Here the key is containing m
2
 decimal numbers. Thus the 

size of the key space   

                            8m
2
    

              =          2     .                                             
Let us suppose that, the time required for the computation 

of the cipher with one value of the key is 10
-7

 seconds. Then 
the time required for processing the cipher with all the 
possible values of the key in the key space is  

     8m
2
                       (2.4) m

2 
-7                 (2.4)m

2
-15

 

(2)
           

x 10
-7

     = 10                  = 3.12 x 10       years                                                          

365x24x60x60     365x24x60x60 

 
This time is very large when m is greater than or equal to 

3. 

In our example as we have taken m=4, the attack on this 
cipher, by the brute force approach, is totally ruled out. 

Let us now investigate the known plaintext attack. In this 
case, we know as many plaintext and ciphertext pairs as we 
require, making an attempt for breaking the cipher. In the light 
of the above information, we have as many pairs of P and C as 
we require.  

(3.4) Q0 = 

(3.5) K = 

(3.6) C = 

.(3.7) C = 

(3.8) 

C = 
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If we take r=1, that is, if we confine our attention to a 
single round of the iteration process, then we have the 
relations connecting C and P as follows: 

         P0 = Sub (P0)                                                               (4.1) 
 

         P0 = Shift (P0)                                                             (4.2) 
 

         P0 = Mix (P0)                                                              (4.3)           

         P0 = P0      K                                                                (4.4) 
 

         Q0 = Sub (Q0)                                                              (4.5) 

         Q0 = Shift (Q0)                                                            (4.6) 

         Q0 = Mix (Q0)                                                             (4.7) 
             

         Q0 = Q0           K                                                          (4.8) 
 
 

         (P1 , Q1) = Shuffle ( P0, Q0 )                                       (4.9) 
 

         C = P1  ||  Q1                                                              (4.10) 
 

In the known plaintext attack, we know P0 and Q0 
corresponding to the initial stage.  We also know the C 
obtained at the end.  

As C is known to us, we can determine P1 and Q1 from 
(4.10) 

On using the IShuffle ( ), on (4.9), we get the current P0 
and Q0 which are occurring on the left hand side of (4.4) and 
(4.8). On using initial the P0 and the Sub ( ), we get P0 on the 
left hand side of (4.1). After that, on using shift ( ) on the 
available P0, we get P0 occurring on the Left hand side of 
(4.2). Then on using the function Mix( ) on the current P0, we 
have the P0 occurring on the left side of (4.3). Thus, we can 
readily determine the key K from (4.4). Hence this cipher can 
be broken by the known plaintext attack if we confine only to 
one step in the iteration process. 

Let us now study the cipher when r = 2. Then the equations 
governing the cipher are (4.1) to (4.10) and the following 

         P1 = Sub (P1)                                                             (4.11) 
 

         P1 = Shift (P1)                                                           (4.12) 
 

         P1 = Mix (P1)                                                            (4.13)           

         P1 = P1      K                                                              (4.14) 
 
 

         Q1 = Sub (Q1)                                                            (4.15) 

         Q1 = Shift (Q1)                                                          (4.16) 

         Q1 = Mix (Q1)                                                           (4.17) 
 

         Q1 = Q1           K                                                        (4.18) 
 
 

         (P2 , Q2) = Shuffle ( P1, Q1 )                                     (4.19) 
 

         C = P2  ||  Q2                                                              (4.20) 
 

In the known plaintext attack, we know C, obtained at the 
end of the iteration process, and the corresponding P0 and Q0, 
which are available at the very beginning of the iteration 
process. 

As we know C, we can determine P2 and Q2 from (4.20). 
On using IShuffle on (4.19), we get P1 and Q1 which are 
occurring on the left side of (4.14) and (4.18). We cannot 
determine K as we do not know the P1 and Q1 occurring in the 
right hand side of (4.14) and (4.18). Here, we notice that, 
though P0 and Q0 are known to us, we cannot determine the P1 

and Q1 which are occurring on the right hand side of (4.14) 
and (4.18), by starting at the beginning as the key K is 
occurring in (4.4) and (4.8). In the light of these facts, this 
cipher cannot be broken by the known plaintext attack, when 
we have confined to r=2. This shows that it is impossible to 
break the cipher by the known plaintext attack when we carry 
out all the sixteen rounds in the iteration.  

 

Intuitively choosing a plaintext or ciphertext and 
determining the key or a function of the key is a formidable 
task in the case of this cipher.  

From the above discussion we conclude that this cipher is 
not breakable by all the possible attacks that are available in 
cryptography.  

V. COMPUTATIONS AND CONCLUSIONS 
 

In this investigation, we have offered a through 
modification in the Feistel cipher by taking the plaintext in the 
form of a pair of matrices, and by applying several procedures, 
namely,  substitution, shifting, mixing,  XORing with the key 
and shuffle operation. Each one of these procedures modifies 
the plaintext in a through manner and creates confusion and 
diffusion in the development of the cipher. The iteration 
process, which is the basic one in this cipher, supports all the 
above procedures in a strong way.  

Here it may be noted that the substitution table generated 
in a random manner by using the numbers [0-255] is to be sent 
to the receiver by the sender. 

The programs for encryption and decryption are written in 
C language. 

The plaintext given in (3.1) is divided into 20 blocks, 
wherein each block is containing 32 characters. We have 
appended in the last block by adding 13 blank characters, so 
that it becomes a complete block. On applying the encryption 
algorithm given in section 2 we get the cipher text 
corresponding to the entire plaintext (excluding the first block 
for which the cipher text is already given in (3.6) ), in the form 

  

212   111   166   213   179   183    219   102    51     84    223   38     165   45    198   253    

244   153   37     69      150   119    82      206   223  122  100   147   82    145   190   142    

122   45     157   190   115   140    161    154   229   63    77     179   44    237   243   158    

140   154   148   153   53     41       110    76    146   115  202   111   223   77    50     100    

147   158   94     147   126   250    105    153   103   121   34    63     71     62    155   102    

51      93     211   211   35     125    54      173   157   186   100  149  22     94    115   140    

161   154   229   63     77     179     44      237   243   158   140  154  148   153  53      41    

110   55     38      73     81     237     201   146    84     89     103   121  34    63     71     62    

155   102   51      93    211   211     14      113   148   51     92      228  201  42    61     185    

79     211   108    203  59     124     231   142   242   68     126   142   140   154  148   153    

53     41     110    76     146   115    218   100    201   39     60     189   38     253  244  211    

50     206   242    68     126   142   125   54       204   102   187  167   166   70     250  109    

91     59     124    231   25     67      53     202    126    155   102   89    219  231   61    25    

53     41     14      113   148   51      92     228    201    42      61     185  79    211   108  203    

59     124   231    142   242   68      126   142   140   154   148   153   53     41     110   76    

146   115   218    100   201   39      60     189   38     253   244   211   50     206   242   68    

126   142   125    54     204   102    187   167   166   91     81     190   155   86     206   223    

217   140   219    103   172   102    143   209   207   108   198   109   70     250   109   91    

59     125   182    99     53     77      242   106   82     220   111   223   73     146   84     89    

103   117    44     237   247   166    73     53     41     27     232   231   162   217   219   231    

56     202    25     174   83     244    219   50     206   223   57     232   201   169   73     147    

82     150   228    201   39     60      166   253   244   211   38     73     57     229   233   55    

239   166   153    150   119   146    35     244   115   233   182   99     53     221   61     50    

55     211   106    217   219   166    73     81     101   231   56     202   25     174   83     244    

219   50     206    223   57     232    201   169   73     147   82     150   227   114   100   149    

30     220   153    37     69     150    119   146   37     221   61     48     231   25     67     53    

206   76     146    163   219   148    253   54     204   179   183   206   120   239   36     71    

232   232   201    169   73     147    82     150   228   201   39     61     166   76     146   115    

203   210   111    223   77     51      44     239   36     71     232   231   211   108   198   107    

186   122   100    111   166   213    179   183   206   113   148   51     92     167   233   182    
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101   157   190    115   209   147    82     144   231   25     67     53     206   76     146   163    

219   148   253    54     204   179    183   206   120   239   36     71     232   232   201   169    

73     147    82     150   228    201    39    61     166   76     146   115   203   210   111   223    

77      51      44    239   36     86      233   233   150   212   111   166   213   179   183   206    

203   206   113    148   51      92     167   233   182   101   157   190   115   209   147   82    

147   38     165    45     198   228    201   42     61     185   50     74     139   44     239   36    

218   182   118    250   198   104    253   26     93     211   211   14     113   148   51     92    

228   201    42     61     185   79      211   108   203   59     124   231   142   242   68     126    
 

The cryptanalysis, carried out in this investigation, clearly 
shows that this cipher is a strong one. This has become a very 
good cipher as we have taken the length of the plaintext as 
large as possible (2048 bits), and  supported the encryption 
process with a good number of functions so that the plaintext 
undergoes a through transformation ( in each round of the 
iteration process) before it becomes the ciphertext. In this 
analysis, the substitution table generated in the random 
manner plays a very important role. 
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