
(IJACSA) International Journal of Advanced Computer Science and Applications,

 Vol. 3, No.8, 2012

23 | P a g e

www.ijacsa.thesai.org

A Modified Feistel Cipher Involving Substitution,

shifting of rows, mixing of columns, XOR operation

with a Key and Shuffling

V.U.K Sastry

Dean R&D, Department of Computer Science and

Engineering, Sreenidhi Institute of Science & Tech.

Hyderabad, India.

K. Anup Kumar

Associate Professor, Department of Computer

Science and Engineering, SNIST,

Hyderabad, India

Abstract— In this paper, we have developed a modification to the

Feistel cipher by taking the plaintext in the form of a pair of

matrices and introducing a set of functions namely, substitute,

shifting of rows, mixing of columns and XOR operation with a

key. Further we have supplemented this process by using another

function called shuffling at the end of each round of the iteration

process. In this analysis, the cryptanalysis clearly indicates that

the strength of the cipher is quite significant and this is achieved

by the introduction of the aforementioned functions.

Keywords- encryption; decryption; cryptanalysis; avalanche effect;

XOR operation.

I. INTRODUCTION

The study of the Feistel cipher has been a fascinating
fundamental area in the development of block ciphers in
cryptography. In the recent years, we have offered several
modifications [1-4] to the classical Feistel cipher by taking the
plaintext in the form of a pair of matrices. In all these
investigations, we have made use of the multiplication with a
single key matrix or the multiplication with a pair of key
matrices as a fundamental tool in the development of the
cipher. This is associated with the mod operation. Further, we
have introduced some operations such as mixing, permutation,
blending or shuffling in order to achieve confusion and
diffusion, so that, the strength of the cipher becomes
significant.

In the present investigation, our objective is to study a
modification of the Feistel cipher, wherein we use the
fundamental operations such as substitution, shifting of rows,
mixing of columns, XOR operation and Shuffling. It may be
noted here that the operations, substitution, shifting of rows
and mixing of columns are very well utilized in Advanced
Encryption Standard (AES) [5]. Our interest here is to develop
a strong block cipher which exceeds, in strength, almost all the
other ciphers available in the literature.

 In what follows we present the plan of the paper. In
section 2, we deal with the development of the cipher and
present the flowcharts and algorithms required in this analysis.
In section 3, we mention an illustration of the cipher and
describe the avalanche effect. We study the cryptanalysis in

section 4. Finally, in section 5, we discuss the computations
and draw conclusions.

II. DEVELOPMENT OF THE CIPHER

Consider a plaintext P containing 2m
2
 characters. On using

the EBCIDIC code, the characters occurring in the plaintext
can be represented in terms of decimal numbers wherein each
number lies in [0 - 255]. Then, these numbers can be written in
the form of a pair of square matrices P0 and Q0, wherein each
one is of size m.

Let us consider a key matrix K, where K is a square matrix
whose size is m.

The flowcharts depicting the encryption and the decryption
are given below.

Fig 1. The process of Encryption

Qi-1 = Mix (Qi-1)

Qi-1 = Shift (Qi-1) Pi-1 = Shift (Pi-1)

Pi-1 = Mix (Pi-1)

Pi-1 = Pi-1 K

C = Pr Qr

for i = 1 to r

Pi , Qi

Pi-1 = Sub (Pi-1) Qi-1 = Sub (Qi-1)

Pi-1 Qi-1

Read P0, Q0 , K

Qi-1 = Qi-1 K

(Pi , Qi) = Shuffle (Pi-1, Qi-1)

(IJACSA) International Journal of Advanced Computer Science and Applications,

 Vol. 3, No.8, 2012

24 | P a g e

www.ijacsa.thesai.org

Fig 2. The process of Decryption

Now we write the algorithms for the processes encryption
and decryption as given below.

A. Algorithm for Encryption

1. Read P, K

2. P0 = Left half of P.

3. Q0 = Right half of P.

4. for i = 1 to r

 begin

 Pi-1 = Sub (Pi-1)

 Pi-1 = Shift (Pi-1)

 Pi-1 = Mix (Pi-1)

 Pi-1 = Pi-1 K

 Qi-1 = Sub (Qi-1)

 Qi-1 = Shift (Qi-1)

 Qi-1 = Mix (Qi-1)

 Qi-1 = Qi-1 K

 (Pi , Qi) = Shuffle (Pi-1, Qi-1)

 end

5. C = Pr Qr /* represents concatenation */

6. Write(C)

B. Algorithm for Decryption

1. Read C, K

2. Pr = Left half of C.

3. Qr = Right half of C.

4. for i = r to 1

 begin

 (Pi-1 , Qi-1) = IShuffle (Pi, Qi)

 Pi-1 = Pi-1 K

 Pi-1 = IMix (Pi-1)

 Pi-1 = IShift (Pi-1)

 Pi-1 = ISub (Pi-1)

 Qi-1 = Qi-1 K

 Qi-1 = IMix (Qi-1)

 Qi-1 = IShift (Qi-1)

 Qi-1 = ISub (Qi-1)

 end

5. P = P0 Q0 /* represents concatenation */

6. Write (P)

Let us now explain the basic ideas underlying in the
functions Sub (), Shift (), Mix (), used for substitution,
shifting of rows, mixing of columns respectively.

Firstly, Let us focus our attention on the substitution
process involved in the function Sub ().

Consider the EBCIDIC code which can be written in the
form a matrix given by

E (i, j) = 16*(i-1) + (j–1), i = 1 to 16 and j = 1 to 16
(2.1)

 All these numbers can be placed in the form of a table.
Let us arrange these numbers, which are lying in the

interval [0-255], in a random manner.

We represent these numbers in the hexadecimal notation.
All these numbers can be written in the form of a table given
below (table 2).

In the encryption process, when we come across a number
lying in [0-255], we will replace it by the corresponding
number in the substitution table. For example, if we come
across the number 70, in the process of encryption, this will be
converted into hexadecimal number as 46. Then, 70 will be
replaced by the number which is occurring in the 4

th
 row, 6

th

column of the substitution table, i.e by 5A (= 90 in decimal
notation). This is the process of substitution. Keeping the
EBCIDIC code matrix and the substitution table in view, we
form the inverse substitution table which is given in Table 2.

The inverse substitution table will be utilized while
carrying out the decryption process and it is denoted by
function ISub ().

Read Pr, Qr, , K

Pi-1 = IShift (Pi-1) Qi-1 = IShift (Qi-1)

Pi-1 = IMix (Pi-1)

P = P0 Q0

for i = r to 1

Pi-1 , Qi-1

Qi-1 = IMix (Qi-1)

Pi-1 = Pi-1 K Qi-1 = Qi-1 K

(Pi-1 , Qi-1) = IShuffle (Pi, Qi)

Pi -1 Qi -1

Qi-1 = ISub (Qi-1) Pi-1 = ISub (Pi-1)

(IJACSA) International Journal of Advanced Computer Science and Applications,

 Vol. 3, No.8, 2012

25 | P a g e

www.ijacsa.thesai.org

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

0

63

7C

77

7B

F2

6B

6F

C5

30

01

67

2B

FE

D7

AB

76

1

CA

82

C9

7D

FA

59

47

F0

AD

D4

A2

AF

9C

A4

72

C0

2

B7

FD

93

26

36

3F

F7

CC

34

A5

E5

F1

71

D8

31

15

3

04

C7

23

C3

18

96

05

9A

07

12

80

E2

EB

27

B2

75

4

09

83

2C

1A

1B

6E

5A

A0

52

3B

D6

B3

29

E3

2F

84

5

53

D1

00

ED

20

FC

B1

5B

6A

CB

BE

39

4A

4C

58

CF

6

D0

EF

AA

FB

43

4D

33

85

45

F9

02

7F

50

3C

9F

A8

7

51

A3

40

AF

92

9D

38

F5

BC

B6

DA

21

10

FF

F3

D2

8

CD

0C

13

EC

5F

97

44

17

C4

A7

7E

3D

64

5D

19

73

9

60

81

4F

DC

22

2A

90

88

46

EE

B8

14

DE

5E

0B

DB

A

E0

32

3A

0A

49

06

24

5C

C2

D3

AC

62

91

95

E4

79

B

E7

C8

37

6D

8D

D5

4E

A9

6C

56

F4

6A

65

7A

AE

08

C

BA

78

25

2E

1C

A6

B4

C6

E8

DD

74

1F

4B

BD

8B

8A

D

70

3E

B5

66

48

03

F6

0E

61

35

57

B9

86

C1

1D

9E

E

E1

F8

98

11

69

D9

8E

94

9B

1E

87

E9

CE

55

28

DF

F

8C

A1

89

0D

BF

E6

42

68

41

99

2D

0F

B0

54

BB

16

Table 1. Substitution Table

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

0

52

09

6A

D5

30

36

A5

38

BF

40

A3

9E

81

F3

D7

FB

1

7C

E3

39

82

9B

2F

FF

87

34

8E

43

44

C4

DE

F9

CB

2

54

7B

94

32

A6

C2

23

3D

EE

4C

95

0B

42

FA

C3

4E

3

08

2E

A1

66

28

D9

24

B2

76

5B

A2

49

6D

8B

D1

25

4

72

F8

F6

64

86

68

98

16

D4

A4

5C

CC

5D

65

B6

92

5

6C

70

48

50

FD

ED

B9

DA

5E

15

46

57

A7

8D

9D

84

6

90

D8

AB

00

8C

BC

D3

0A

F7

E4

58

05

B8

B3

45

06

7

D0

2C

1E

8F

CA

3F

0F

02

C1

AF

BD

03

01

13

8A

6B

8

3A

91

11

41

4F

67

DC

EA

97

F2

CF

CE

F0

B4

E6

73

9

96

AC

74

22

E7

AD

35

85

E2

F9

37

E8

1C

75

DF

6E

A

47

F1

1A

71

1D

29

E5

89

6F

B7

62

0E

AA

18

BE

1B

B

FC

56

3E

4B

C6

D2

79

20

9A

DB

C0

FE

78

CD

5A

F4

C

1F

DD

A8

33

88

07

C7

31

B1

12

10

59

27

80

EC

5F

D

60

51

F7

A9

19

B5

4A

0D

2D

E5

7A

9F

93

C9

9C

EF

E

A0

E0

3B

4D

AE

2A

F5

B0

C8

EB

BB

3C

83

53

99

61

F

17

2B

04

7E

BA

77

D6

26

E1

69

14

63

55

21

0C

7D

Table 2. Inverse Substitution Table

(IJACSA) International Journal of Advanced Computer Science and Applications,

 Vol. 3, No.8, 2012

26 | P a g e

www.ijacsa.thesai.org

Now let us see the process of shifting involved in the
function Shift (), during the encryption process we come
across plaintext Pi-1 and Qi-1 in the process of iteration. As Pi-1
is a square matrix of size m, it can be written in the form

 p11 p12 p13 ……… p1m

 p21 p22 p23 ……… p2m

 p31 p32 p33 ……… p3m

 pm1 pm2 pm3 ……… pmm

On converting each decimal number in (2.4) into its binary

form, we get

 p111p112…...p118 p121p122…….p128 …… p1m1p1m2……p1m8

 p111p112…...p118 p121p122…….p128 …… p1m1p1m2……p1m8

 p111p112…...p118 p121p122…….p128 …… p1m1p1m2……p1m8

 p111p112…...p118 p121p122…….p128 …… p1m1p1m2……p1m8

Here each row contains 8m binary bits. In the process of

shifting, we offer a right shift of 4 bits in the first row, 12 bits
in the second row, 20 bits in the third row and in general,

4 + 8 * (i-1) bits right shift in the i
th

 row.

This process is carried out till we exhaust all the rows. It
may be noted here that IShift () denotes the reverse process of
Shift ().

In this, the binary bits are obviously given a left shift in an
appropriate manner.

To have a clear insight into the mixing process denoted by
the function Mix (), let us consider again the matrix Pi-1,
which is represented in the form (2.5).

Let us restrict our attention only to a plaintext matrix,
wherein, m=4. This can be written in the form given below

 p111 p112……p118 p121 p122……p128 …… p141 p142….p148

 p211 p212……p218 p221 p222……p228 …… p241 p242….p248

 p311 p312……p318 p321 p322……p328 …… p341 p342….p348

 p411 p412…...p418 p421 p422…...p428 …… p441 p442….p448

This has 4 rows and 32 columns. On concatenating the

binary bits of the 1
st
 column and the 17

th
 column we get a

string of binary bits, which can be converted into a decimal
number. This can be considered as new p11.

On considering the binary bits of the 2
nd

 column and the
18

th
 column and concatenating them, we get another decimal

number which will be called as p12.

On adopting the same process till we exhaust all the
columns taken in pairs, we get the decimal numbers which
correspond to the other elements of the matrix written in the
row wise order. Thus we have, the new plaintext matrix,
which is obtained after the completion of mixing. Imix () is
the reverse process of Mix ().

For a detailed discussion of the function shuffle (),
wherein we are shuffling the columns of two matrices, we
refer to [4].

III. ILLUSTRATION OF THE CIPHER

Consider the plaintext given below

My dear young lady! We both are well qualified. You have
done your B.Tech and I have completed my M.S, where is the
problem! We can fly anywhere. Why your father and mother
are not accepting our marriage. We both belong to the same
cast, we both are farmers. What is the objection of your father
and your mother, are they having any thinking regarding my
financial status? We are having as much landed property as
your father is having. My father and your father both are well
trained seasonal politicians. I wonder why your father is not
accepting and why your mother is not accepting. Our marriage
must happen soon. Yours loving Mr.X (3.1)

Let us focus our attention on the first 32 characters of the
plaintext. This is given by

My dear young lady! We both are

On using EBCIDIC code, we get the plaintext matrix P in
the form

 77 121 32 100 101 97 114 32

 121 111 117 110 103 32 108 97

 100 121 33 32 87 101 32 98

 111 116 104 32 97 114 101 32

This can be written in the form of a pair of matrices given

by

 77 121 32 100

 121 111 117 110

 100 121 33 32

 111 116 104 32

(2.6)

(3.2) P =

(3.3)
P0 =

(2.4)

:

:

:

:
:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

(2.5)

(IJACSA) International Journal of Advanced Computer Science and Applications,

 Vol. 3, No.8, 2012

27 | P a g e

www.ijacsa.thesai.org

and

 101 97 114 32

 103 32 108 97

 87 101 32 98

 97 114 101 32

Let us take the key matrix K in the form

 45 128 192 53

 133 200 150 16

 100 150 33 120

 13 189 164 55

On applying the encryption algorithm, given in section 2,

we get the ciphertext C in the form

 51 145 164 146 108 237 147 173

 155 18 82 72 85 155 19 71

 182 102 90 237 150 142 218 60

 11 150 219 226 237 177 36 100

On using the decryption algorithm on (3.6), we get back

the original plaintext P given by (3.2).

Let us now study the avalanche effect which throws some
light on the strength of the cipher.

On changing the first row, first column element of P0, from
77 to 76, we get a 1 bit change in the plaintext. On applying
the encryption algorithm on the modified plaintext, keeping up
the key as it is, we get the ciphertext C in the form

 218 88 129 219 201 58 54 101

 157 209 7 186 109 153 44 75

 219 120 243 158 95 55 38 117

 43 233 147 229 81 38 133 187

On comparing (3.6) and (3.7), after converting them into

their binary form, we notice that they differ by 128 bits out of
256 bits. This indicates that the cipher is quite good from the
view point of its strength.

Let us now consider a one bit change in the key. This is
achieved by changing first row, first column element of the
key K, given by (3.5), from 45 to 44.

Now on using the modified key and applying the
encryption algorithm, keeping the plaintext as it is, we get the
cipher text C in the form

 79 149 68 154 22 239 105 98

 232 131 221 63 57 229 243 114

 103 82 190 152 14 222 73 209

 179 44 237 153 44 75 219 120

Now on comparing (3.6) and (3.8), after converting both

into their binary form, we find that these two ciphertexts differ
by 134 bits out of 256 bits.

This also shows that, the strength of the cipher is expected
to be significant.

IV. CRYPTANALYSIS

In cryptography, determination of the strength of the
cipher is a very important aspect. In the literature of
cryptography, it is well known that the cryptanalysis can be
carried out by the following approaches.

1. Ciphertext only attack (Brute force attack)

2. Known plaintext attack

3. Chosen plaintext attack

4. Chosen ciphertext attack

As William Stallings [6] has pointed out that every cipher
must be designed so that it withstands the first two attacks at
least.

Let us now consider the brute force attack.

Here the key is containing m
2
 decimal numbers. Thus the

size of the key space

 8m
2

 = 2 .
Let us suppose that, the time required for the computation

of the cipher with one value of the key is 10
-7

 seconds. Then
the time required for processing the cipher with all the
possible values of the key in the key space is

 8m
2
 (2.4) m

2
-7 (2.4)m

2
-15

(2)

x 10
-7

 = 10 = 3.12 x 10 years

365x24x60x60 365x24x60x60

This time is very large when m is greater than or equal to

3.

In our example as we have taken m=4, the attack on this
cipher, by the brute force approach, is totally ruled out.

Let us now investigate the known plaintext attack. In this
case, we know as many plaintext and ciphertext pairs as we
require, making an attempt for breaking the cipher. In the light
of the above information, we have as many pairs of P and C as
we require.

(3.4) Q0 =

(3.5) K =

(3.6) C =

.(3.7) C =

(3.8)

C =

(IJACSA) International Journal of Advanced Computer Science and Applications,

 Vol. 3, No.8, 2012

28 | P a g e

www.ijacsa.thesai.org

If we take r=1, that is, if we confine our attention to a
single round of the iteration process, then we have the
relations connecting C and P as follows:

 P0 = Sub (P0) (4.1)

 P0 = Shift (P0) (4.2)

 P0 = Mix (P0) (4.3)

 P0 = P0 K (4.4)

 Q0 = Sub (Q0) (4.5)

 Q0 = Shift (Q0) (4.6)

 Q0 = Mix (Q0) (4.7)

 Q0 = Q0 K (4.8)

 (P1 , Q1) = Shuffle (P0, Q0) (4.9)

 C = P1 || Q1 (4.10)

In the known plaintext attack, we know P0 and Q0
corresponding to the initial stage. We also know the C
obtained at the end.

As C is known to us, we can determine P1 and Q1 from
(4.10)

On using the IShuffle (), on (4.9), we get the current P0
and Q0 which are occurring on the left hand side of (4.4) and
(4.8). On using initial the P0 and the Sub (), we get P0 on the
left hand side of (4.1). After that, on using shift () on the
available P0, we get P0 occurring on the Left hand side of
(4.2). Then on using the function Mix() on the current P0, we
have the P0 occurring on the left side of (4.3). Thus, we can
readily determine the key K from (4.4). Hence this cipher can
be broken by the known plaintext attack if we confine only to
one step in the iteration process.

Let us now study the cipher when r = 2. Then the equations
governing the cipher are (4.1) to (4.10) and the following

 P1 = Sub (P1) (4.11)

 P1 = Shift (P1) (4.12)

 P1 = Mix (P1) (4.13)

 P1 = P1 K (4.14)

 Q1 = Sub (Q1) (4.15)

 Q1 = Shift (Q1) (4.16)

 Q1 = Mix (Q1) (4.17)

 Q1 = Q1 K (4.18)

 (P2 , Q2) = Shuffle (P1, Q1) (4.19)

 C = P2 || Q2 (4.20)

In the known plaintext attack, we know C, obtained at the
end of the iteration process, and the corresponding P0 and Q0,
which are available at the very beginning of the iteration
process.

As we know C, we can determine P2 and Q2 from (4.20).
On using IShuffle on (4.19), we get P1 and Q1 which are
occurring on the left side of (4.14) and (4.18). We cannot
determine K as we do not know the P1 and Q1 occurring in the
right hand side of (4.14) and (4.18). Here, we notice that,
though P0 and Q0 are known to us, we cannot determine the P1

and Q1 which are occurring on the right hand side of (4.14)
and (4.18), by starting at the beginning as the key K is
occurring in (4.4) and (4.8). In the light of these facts, this
cipher cannot be broken by the known plaintext attack, when
we have confined to r=2. This shows that it is impossible to
break the cipher by the known plaintext attack when we carry
out all the sixteen rounds in the iteration.

Intuitively choosing a plaintext or ciphertext and
determining the key or a function of the key is a formidable
task in the case of this cipher.

From the above discussion we conclude that this cipher is
not breakable by all the possible attacks that are available in
cryptography.

V. COMPUTATIONS AND CONCLUSIONS

In this investigation, we have offered a through
modification in the Feistel cipher by taking the plaintext in the
form of a pair of matrices, and by applying several procedures,
namely, substitution, shifting, mixing, XORing with the key
and shuffle operation. Each one of these procedures modifies
the plaintext in a through manner and creates confusion and
diffusion in the development of the cipher. The iteration
process, which is the basic one in this cipher, supports all the
above procedures in a strong way.

Here it may be noted that the substitution table generated
in a random manner by using the numbers [0-255] is to be sent
to the receiver by the sender.

The programs for encryption and decryption are written in
C language.

The plaintext given in (3.1) is divided into 20 blocks,
wherein each block is containing 32 characters. We have
appended in the last block by adding 13 blank characters, so
that it becomes a complete block. On applying the encryption
algorithm given in section 2 we get the cipher text
corresponding to the entire plaintext (excluding the first block
for which the cipher text is already given in (3.6)), in the form

212 111 166 213 179 183 219 102 51 84 223 38 165 45 198 253

244 153 37 69 150 119 82 206 223 122 100 147 82 145 190 142

122 45 157 190 115 140 161 154 229 63 77 179 44 237 243 158

140 154 148 153 53 41 110 76 146 115 202 111 223 77 50 100

147 158 94 147 126 250 105 153 103 121 34 63 71 62 155 102

51 93 211 211 35 125 54 173 157 186 100 149 22 94 115 140

161 154 229 63 77 179 44 237 243 158 140 154 148 153 53 41

110 55 38 73 81 237 201 146 84 89 103 121 34 63 71 62

155 102 51 93 211 211 14 113 148 51 92 228 201 42 61 185

79 211 108 203 59 124 231 142 242 68 126 142 140 154 148 153

53 41 110 76 146 115 218 100 201 39 60 189 38 253 244 211

50 206 242 68 126 142 125 54 204 102 187 167 166 70 250 109

91 59 124 231 25 67 53 202 126 155 102 89 219 231 61 25

53 41 14 113 148 51 92 228 201 42 61 185 79 211 108 203

59 124 231 142 242 68 126 142 140 154 148 153 53 41 110 76

146 115 218 100 201 39 60 189 38 253 244 211 50 206 242 68

126 142 125 54 204 102 187 167 166 91 81 190 155 86 206 223

217 140 219 103 172 102 143 209 207 108 198 109 70 250 109 91

59 125 182 99 53 77 242 106 82 220 111 223 73 146 84 89

103 117 44 237 247 166 73 53 41 27 232 231 162 217 219 231

56 202 25 174 83 244 219 50 206 223 57 232 201 169 73 147

82 150 228 201 39 60 166 253 244 211 38 73 57 229 233 55

239 166 153 150 119 146 35 244 115 233 182 99 53 221 61 50

55 211 106 217 219 166 73 81 101 231 56 202 25 174 83 244

219 50 206 223 57 232 201 169 73 147 82 150 227 114 100 149

30 220 153 37 69 150 119 146 37 221 61 48 231 25 67 53

206 76 146 163 219 148 253 54 204 179 183 206 120 239 36 71

232 232 201 169 73 147 82 150 228 201 39 61 166 76 146 115

203 210 111 223 77 51 44 239 36 71 232 231 211 108 198 107

186 122 100 111 166 213 179 183 206 113 148 51 92 167 233 182

(IJACSA) International Journal of Advanced Computer Science and Applications,

 Vol. 3, No.8, 2012

29 | P a g e

www.ijacsa.thesai.org

101 157 190 115 209 147 82 144 231 25 67 53 206 76 146 163

219 148 253 54 204 179 183 206 120 239 36 71 232 232 201 169

73 147 82 150 228 201 39 61 166 76 146 115 203 210 111 223

77 51 44 239 36 86 233 233 150 212 111 166 213 179 183 206

203 206 113 148 51 92 167 233 182 101 157 190 115 209 147 82

147 38 165 45 198 228 201 42 61 185 50 74 139 44 239 36

218 182 118 250 198 104 253 26 93 211 211 14 113 148 51 92

228 201 42 61 185 79 211 108 203 59 124 231 142 242 68 126

The cryptanalysis, carried out in this investigation, clearly
shows that this cipher is a strong one. This has become a very
good cipher as we have taken the length of the plaintext as
large as possible (2048 bits), and supported the encryption
process with a good number of functions so that the plaintext
undergoes a through transformation (in each round of the
iteration process) before it becomes the ciphertext. In this
analysis, the substitution table generated in the random
manner plays a very important role.

REFERENCES

[1] V.U.K Sastry and K. Anup Kumar, “ A Modified Feistel Cipher
involving a key as a multiplicant on both the sides of the Plaintext matrix
and supplemented with Mixing Permutation and XOR Operation”,
International Journal of Computer Technology and Applications ISSN:
2229-6093. Vol. 3, No.1, pp. 23-31, 2012.

[2] V.U.K Sastry and K. Anup Kumar, “A Modified Feistel Cipher
Involving a Key as a Multiplicant on Both the Sides of the Plaintext
Matrix and Supplemented with Mixing, Permutation, and Modular
Arithmetic Addition”, International Journal of Computer Technology
and Applications ISSN: 2229-6093. Vol. 3, No.1, pp. 32-39, 2012.

[3] V.U.K Sastry and K. Anup Kumar, “A Modified Feistel Cipher
Involving a Pair of Key Matrices, Supplemented with XOR Operation,
and Blending of the Plaintext in each Round of the Iteration Process”,
International Journal of Computer Science and Information
Technologies ISSN: 0975-9646. Vol. 3, No.1, pp. 3133-3141, 2012.

[4] V.U.K Sastry and K. Anup Kumar, “A Modified Feistel Cipher
involving a pair of key matrices, Supplemented with Modular Arithmetic
Addition and Shuffling of the plaintext in each round of the iteration
process”, International Journal of Computer Science and Information
Technologies ISSN: 0975-9646. Vol. 3, No.1, pp. 3119-3128, 2012.

[5] Daemen J, and Rijmen V, “Rijndael, the Advanced Encryption Standard
(AES)”, Dr. Dobbs Journal, Vol. 26(3), pp. 137 -139, Mar 2001.

[6] William Stallings, Cryptography and Network Security, Principles and
Practice, Third Edition, Pearson, 2003.

AUTHORS PROFILE

Dr. V. U. K. Sastry is presently working as Professor
in the Dept. of Computer Science and Engineering

(CSE), Director (SCSI), Dean (R & D), SreeNidhi

Institute of Science and Technology (SNIST),
Hyderabad, India. He was Formerly Professor in IIT,

Kharagpur, India and

Worked in IIT, Kharagpur during 963 – 1998. He
guided 12 PhDs, and published more than 40 research

papers in various international journals. His research interests are Network

Security & Cryptography, Image Processing, Data Mining and Genetic
Algorithms.

Mr. K. Anup Kumar is presently working as an

Associate Professor in the Department of Computer

Science and Engineering, SNIST, Hyderabad India. He
obtained his B.Tech (CSE) degree from JNTU

Hyderabad and his M.Tech (CSE) from Osmania

University, Hyderabad. He is now pursuing his PhD
from JNTU, Hyderabad, India, under the supervision

of Dr. V.U.K. Sastry in the area of Information Security and

Cryptography. He has 10 years of teaching experience and his interest in
research area includes Cryptography,Steganography and Parallel Processing

Systems.

