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Abstract— In this paper the classification results of compressed 

sensed ECG signals based on various types of projection matrices 

is investigated. The compressed signals are classified using the 

KNN (K-Nearest Neighbour) algorithm. A comparative analysis 

is made with respect to the projection matrices used, as well as of 

the results obtained in the case of the original (uncompressed) 

signals for various compression ratios. For Bernoulli projection 

matrices it has been observed that the classification results for 

compressed cardiac cycles are comparable to those obtained for 

uncompressed cardiac cycles. Thus, for normal uncompressed 

cardiac cycles a classification ratio of 91.33% was obtained, while 

for the signals compressed with a Bernoulli matrix, up to a 

compression ratio of 15:1 classification rates of approximately 

93% were obtained. Significant improvements of classification in 

the compressed space take place up to a compression ratio of 

30:1. 
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I. INTRODUCTION 

In the last decade, a new concept regarding the acquisition, 
analysis, synthesis and reconstruction of signals was 
introduced. Known under several equivalent names: 
compressed/compressive sampling or sensing 
(acquisition/detection by compression), it speculates the 
sparsity of various classes of signals with respect to certain 
basis or dictionaries. In the following we refer to a signal f 

(including a biomedical one) which is a member of a class F  
R

N
 of ND discrete signal, in particular 1D temporal or 2D 

spatial signals (images). We ask the question of correlating the 
properties of the class F to the minimum number of 
measurements necessary for coding the signal f with a 

Euclidean metric recovery error, , imposed, respectively ||f-

f||l2. The compressed sensing concept relies on an important 
result obtained by Candes and Tao [1-4] namely that if the 
signals of the class F admit representations through a small 
number of components in an adequately selected base, i.e. they 
are sparse in that basis, it is possible to reconstruct them with 
a very good precision from a small number of random 
measurements by solving a simple problem of linear 
programming. Specifically, it is shown that if the the n-th 
component f(n) of a signal in a given base, whose values in 
descending order satisfy the relation |f|(n) ≤ Rn

-1/p
 with R,p > 0 

(which represents a constraint on the descending speed of the 
components) and K measurements (projections) of the form 

yk = <Xk,f >, k=1,…,K, 

are performed, where Xk are N-dimensional Gaussian 
independent vectors with normal standard distribution, then 
any signal that meets the mentioned constraint for a given p 
can be reconstructed with a very high probability in the form 
of a f

#
 signal defined as a solution of minimum norm l1 of the 

system  yk = <Xk,f
#
>  with the relationship  

||f-f#||l2 ≤ CpR(K/logN)
-r
 

where  

r = 1/p-1/2. 

The result is optimal in the sense that it is generally 
impossible to obtain a better precision out of K measurements 
regardless of the mode in which these measurements are 
performed. 

Reformulating the main problem, the situation can be 

regarded as the one of recovering a signal fR
N
 using a 

minimum number of measurements, i.e. of linear functionals 
associated to the signal, so that the Euclidean distance l2 
between the initial and the reconstructed signal to be lower 

than an imposed value . 

II. METHODOLOGY AND OBJECTIVE 

Assuming the existence of a dictionary D of elements 

1}{ k
L

kd with L>N, each column of the dictionary is a 

normalized vector ( 1,
2

 kkk ddd ) belonging to C
N
 that 

will be called atom. The dictionary contains L vectors and can 
be viewed as a matrix of size NxL. An example is the Coifman 
dictionary which contains L=NlogN elements consisting of 
attenuated harmonic waveforms of various durations and 
localizations. Other types of dictionaries are those proposed by 
Ron and Shen [5] or the combined ridglet/wavelet systems 
proposed by Starck, Candes and Donoho [6]. 

For a given sparse signal NCS  the determination of the 

vector of coefficients  with the highest number of null 

elements belonging to C
L
 so that SD  is envisaged. 
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Formally the problem consists of solving the optimization 
problem: 

 DSP subject tomin)(
00

 

where the norm l0 is the number of non-zero elements in . 
Unfortunately the problem is rarely easy to solve. Since in 
general L>>N the solution is not unique. Determining the 
solution of the problem (P0) requires enumerating all subsets 
of the dictionary and finding the smallest subset which can be 
able to represent the signal.  

A remarkable result [2] is that for a large number of 
dictionaries, the determination of sparse solutions can be 
achieved based on the convex optimization, respectively by 
solving the problem  

 DSP subject tomin)(
11

 

Intuitively, using the norm l1 can be regarded as a 
convexification of the problem (P0). The convex optimization 
problems are well studied and there are numerous algorithms 
and software; as already mentioned, the problem (P1) is a 
linear programming problem and can be solved by interior 
point type methods even for large values of N and L. The 
possibility of solving a problem P0 by solving problem (P1) 
may seem surprising. However, there are results which ensure 
in a rigorous manner the fact that, if there is a highly sparse 
solution for the problem (P0) then it is identical to the solution 
of the problem (P1). Conversely, if the solution of the problem 
(P1) is sparse enough, i.e., if the sparsity degree is below a 
certain threshold, then it is ensured the fact that this is also the 
solution for the problem (P0). 

In order to obtain the representation of the signals in 
overcomplete dictionaries several methods have been 
proposed in the past few years, such as the „method of 
frames”, „matching pursuit”, „basis pursuit” (BP), as well as 
the „method of best orthogonal basis” [2]. 

A possibility of improving the results of the reconstruction 
when using the concept of compressed sensing is to use 
specific dictionaries, constructed according to the nature, 
particularities, statistics or the type of the compressed signal. 
Thus, there are algorithms [7] which on reconstruction will use 
a certain dictionary selected from a series of several available 
dictionaries, namely, the dedicated dictionary constructed for 
that particular class of signals. These types of reconstruction 
algorithms have the advantage of a good reconstruction, but 
they require additional information related to the initial signal, 
based on which it will be decided on the dictionary used on 
reconstruction. A solution to this problem would be the correct 
classification of the original signal or of the compressed 
signal. For biomedical signals this classification of the signal 
involves placing the signal into one of several predefined 
pathological classes for which there exist specific dictionaries. 
In practical applications, this classification of the original 
signal is not possible or it requires an additional effort. 
Therefore, the ideal solution (which does not require an extra 
effort in the compression stage) is to classify the compressed 
signal during the reconstruction stage. In other words, for the 
classification of the compressed signal [10], the problem of 

classification is moved from the compression stage into the 
reconstruction stage [8]. 

In this paper we investigate the possibility of classification 
of the ECG signals after their compression based on the 
concept of compressive sensing. In order to obtain good 
results both from the classification point of view and from the 
point of view of the reconstruction, we will segment the ECG 
signal into cardiac cycles which will be further compressed. In 
other words, ECG segments will be used (cardiac cycles) and 
the ECG signal will be reconstructed by concatenating these 
cardiac segments (cycles). According to the algorithm 
described in [9] the segmentation of the ECG signal into 
cardiac cycles is achieved based on the R waves detection. 
Thus, one cardiac cycle is represented by the ECG signal 
between the middle of a RR segment and the middle of the 
next RR segment, where the RR segment means the ECG 
waveform between two successive R waves. Figure 1 
represents the segmentation of the ECG signal. After the 
segmentation of the ECG signal there is a centering of the R 
wave which is made by resampling on 150 samples on both 
sides of the R wave. In this way all cardiac cycles will have 
size 301 and the R wave will be positioned on the sample 151 
[9]. 

 

Figure 1.  Segmented ECG signal [9] 

In order to compress the signals obtained this way, based 
on the concepts of compressed sensing, a KxN projection 
matrix of measurements has been used. The compression ratio 
depends on the value of K. Due to the fact that the original 
ECG segments have the size of 301 (because there was a 
resampling of the cardiac cycles and all cycles have been 
resampled on 301 samples), the projection matrix will have 
one of the dimensions 301, N = 301, and the other dimension 
of the matrix, K, will represent the number of measurements. 
Thus, if the projection matrix has the size 20x301, it means 
that for the compression of any cardiac cycle of size 301 only 
20 measurements will be taken, resulting a compressed 
version of any cardiac cycle of size 20, which means a 
compression ratio of 15:1. 

For the classification of the compressed cardiac cycles we 
used the KNN classifier with an Euclidean distance type, and 
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the decision of belonging to a certain class was based on the 
nearest neighbor. 

A data set of 5601 compressed cardiac cycles, 701 cardiac 
cycles from each of all the 8 classes (normal and 7 
pathological classes) was constructed.  

In order to train the KNN classifier we used 1500 cardiac 
cycles, the testing being made on the rest of the data from the 
database.  

We tested several types of projection matrices (Gaussian 
random, Fourier, random with elements of -1, 0, 1, etc). 
Together with the type of matrices, the number of 
measurements was varied from 2 to 60 (equivalent to 
compression ratio between 150:1 and 5:1). Thus, using 
different types of matrices, an analysis of the classification of 
the compressed cardiac cycles for various compression ratios 
was performed. 

The following types of matrices were used: 

 Random projection matrix (marked on graphs with 
random): all entries of the K × N projection matrix are 
independent standard normal distributed random 
variables. 

 Matrices with zeros and ones, with a predefined  
number of ones (3, 5, 7, 10, 50 or 150) randomly 
distributed across each measurement (marked on 
graphs with V1_3, V1_5,  V1_7,  V1_10 , V1_50 or 
V1_150) 

 Matrices with zeros and ones, with a predefined 
number of ones  (3, 5, 7, 10, 50 or 150) randomly 
distributed across each of the N matrix columns 
(marked on graphs with V1m_3, V1m_5, V1m_10  or 
V1m_15) 

 Random projection matrices with values of -1, 0 and 1 
uniformly distributed (marked on graphs with 
V_1_0_-1 (1/3 1/3 1/3)) i.e.  Bernoulli matrix with 
constant  distribution 

 Random projection matrix with values of -1, 0 and 1, 
and unequal distribution (marked on graphs with 
V_1_0_-1 (1/4 1/2 1/4)) i.e. Bernoulli matrix  

 Matrices with 1 and -1, with a predefined (5, 50 or 
150) number of 1’s randomly distributed across each 
measurement (note on graphs with V-1_5, V-1_50 or 
V-1_150) 

 Random Fourier matrix: The signal is a discrete 
function f on Z/NZ, and the measurements are the 
Fourier coefficients at a randomly selected set of 
frequencies of size K (K < N).  

 Random projection matrix with 0 and 1 (marked on 
graphs with V_0_1_random): all entries of the N × K 
projection matrix are independent standard normally 
distributed random variables. 

III.  EXPERIMENTAL RESULTS AND DISCUSSIONS 

A number of 24 ECG annotated recordings from the MIT-
BIH Arrhythmia database have been used to test the 
possibility of the classification of compressed patterns [30]. 
The ECG signals were initially digitized through sampling at 
360 samples per second, quantized and encoded with 11 bits 
and then resampled as described above. 

Based on the database annotations, eight major classes 
have been identified, namely a class of normal cardiac beats 
and seven classes of pathological beats: atrial premature beat, 
left bundle branch block beat, right bundle branch block beat, 
premature ventricular contraction, fusion of ventricular and 
normal beat, paced beat, fusion of paced and normal beat. 

For the resampled cardiac cycles, but without compression, 
using for training 1500 cycles and using the KNN algorithm, 
we found a classification ratio of 91.33%. 

In Figure 2 the classification curves for various projection 
matrices are represented. Very good results have been 
obtained for the Bernoulli matrix, namely for projection 
matrices with values of -1, 0 and 1, in equal proportion 
(⅓,⅓,⅓) or variable proportions (¼, ½ , ¼). Also, very good 
results were obtained for the projection matrix containing only 
the elements of 0 and -1, in equal proportions (½ and ½), 
which, in fact, is a custom Bernoulli matrix. 

From the point of view of the results, the second best 
projection matrix is random with independent standard normal 
distributed random variables entries. 

The weakest results are obtained with the matrix 
containing values of 0 and -1, with a number of 5 non-zero 
elements. The difference between the results obtained with 
this matrix and the next matrix from the classification point of 
view are high, namely from 50% in case of a compression of 
30:1 obtained with the matrix V-1_5, to approximately 70% 
for compression of  30:1 with the Fourier matrix. 

In Figure 3 the results for three compression ratios, 20:1, 
30:1 and 60:1 are presented. 

It is also observed that for a compression ratio lower than 
20:1 the results of the classification do not improve 
significantly, i.e. one observes a stabilization of the 
classification ratio. Also, between the compression of 20:1 and 
30:1 the improvement of the classification ratio is small, 
therefore choosing the classification ratio will be based on the 
sparsity of the signal, which will implicitly influence the 
reconstruction errors also. 

Another aspect to be mentioned, and which is especially 
important for hardware implementations of compressed 
sensing devices, is that in the case of projection matrices 
which contain only elements of -1, 0 and 1 there is the 
advantage of reducing the number of calculations required for 
compression. If in the case of random matrices used for 
compression a significant number of multiplications is 
necessary, for matrices with elements -1, 0 and 1 (Bernoulli 
matrices) we need only a small number of additions. 
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Figure 2.  The compression ratio vs. classification% for various projection matrices 

 

Figure 3.  The compression ratio of 20:1, 30:1 and 60:1 vs. classification% for various projection matrices 

IV. CONCLUSIONS 

This paper presents a comparative analysis of the 
classification results for compressively sensed cardiac cycles, 
using different project matrices and a variable number of 
measurements. 

The classification of cardiac cycles is made using the KNN 
algorithm and the construction of the projection matrices is 

varied, including random matrices with real numbers, 
Bernoulli matrices, random matrices with elements of -1, 0 
and 1 with different probabilities, random matrices with values 
of 0 and 1 and normal distribution, etc.  

For Bernoulli projection matrices it has been observed that 
the classification results for compressed cardiac cycles are 
comparable to those obtained for uncompressed cardiac 
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cycles. Thus, for normal uncompressed cardiac cycles a 
classification ratio of 91.33% was obtained, while for the 
signals compressed with a Bernoulli matrix, up to a 
compression ratio of 15:1 classification rates of approximately 
93% were obtained. 

Significant improvements of classification in the 
compressed space take place up to a compression ratio of 30:1. 

ACKNOWLEDGMENT 

This work has been supported by CNCSIS –UEFISCSU, 
project PNII – RU - PD 347/2010 (M. Fira) 

This paper was realized with the support of EURODOC 
“Doctoral Scholarships for research performance at European 
level” project, financed by the European Social Found and 
Romanian Government (N. Cleju, C. Barabasa). 

REFERENCES 

[1] D. Donoho, “Compressed sensing,” IEEE Transactions on Information, 
Theory, vol. 52, no. 4, pp. 1289–1306, Apr. 2006.  

[2] S.S. Chen , D.L. Donoho , M.A. Saunders , "Atomic Decomposition by 
Basis Pursuit", SIAM Journal on Scientific Computing, Vol. 43, No. 1, 
2005 

[3] J. Haupt, R. Nowak, “Signal reconstruction from noisy random 
projections”, IEEE Trans. on Information Theory, 52(9), pp. 4036-4048, 
September 2006) 

[4] E. Candès, M. Wakin, “An introduction to compressive sampling”, IEEE 
Signal Processing Magazine, 25(2), pp.21 - 30, March 2008) 

[5] A. Ron, Z. Shen, “Affine systems in L2(Rd): the analysis of the analysis 
operator”, J. Funct. Anal. 148 (1997) 408–447. 

[6] J.-L. Starck, M. Elad, D.L. Donoho, “Redundant multiscale transforms 
and their application for morphological component analysis”, Adv. 
Imag. Elect. Phys. 132 (2004). 

[7] M. Fira, L. Goras, C. Barabasa, N. Cleju, “On ECG Compressed Sensing 
using Specific Overcomplete Dictionaries”, Advances in Electrical and 
Computer Engineering, Vol. 10, Nr. 4, 2010, pp. 23- 28 

[8] C. Monica Fira, L. Goras, C. Barabasa, N. Cleju, „ECG compressed 
sensing based on classification in compressed space and specified 
dictionaries”, EUSIPCO 2011 (The 2011 European Signal Processing 
Conference),  29 august – 2 septembrie 2011, Barcelona, Spania 

[9] M. Fira, L. Goras, "An ECG Signals Compression Method and Its 
Validation Using NNs", IEEE Transactions on Biomedical Engineering, 
Vol. 55, No. 4, 1319 – 1326, April 2008 

[10]  Yi-Haur Shiau, Chaur-Chin Chen, “A Sparse Representation Method 
with Maximum Probability of Partial Ranking for Face Recognition”, 
International Journal of Advanced Research in Artificial Intelligence, 
Vol. 1, No. 1, 2012  

 


