
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 3, No.8, 2012

137 | P a g e

www.ijacsa.thesai.org

Clone Detection Using DIFF Algorithm For Aspect

Mining

Rowyda Mohammed Abd El-

Aziz

 Department of Computer Science

Faculty of Computers and

Information

Helwan University

Cairo, Egypt

Amal Elsayed Aboutabl

Department of Computer Science

Faculty of Computers and

Information

Helwan University

Cairo, Egypt

Mostafa-Sami Mostafa

Department of Computer Science

Faculty of Computers and

Information

Helwan University

Cairo, Egypt

Abstract— Aspect mining is a reverse engineering process that

aims at mining legacy systems to discover crosscutting concerns

to be refactored into aspects. This process improves system

reusability and maintainability. But, locating crosscutting

concerns in legacy systems manually is very difficult and causes

many errors. So, there is a need for automated techniques that

can discover crosscutting concerns in source code. Aspect mining

approaches are automated techniques that vary according to the

type of crosscutting concerns symptoms they search for. Code

duplication is one of such symptoms which risks software

maintenance and evolution. So, many code clone detection

techniques have been proposed to find this duplicated code in

legacy systems. In this paper, we present a clone detection

technique to extract exact clones from object-oriented source

code using Differential File Comparison Algorithm (DIFF) to

improve system reusability and maintainability which is a major

objective of aspect mining.

Keywords- aspect mining; reverse engineering; clone detection;

DIFF algorithm.

I. INTRODUCTION

In software engineering, it is essential to manage the
complexity and evolution of software systems. Hence,
decomposing large software systems into smaller units is
required. The result of this decomposition is separation of
concerns that leads to facilitating parallel work, team
specialization, quality assurance and work planning [1].

However, there are some functionalities that cannot be
assigned to a single unit because the code implementing them
is scattered over many units and tangled with other units. Such
functionalities are called crosscutting concerns [2]. The
existence of these crosscutting concerns leads to reducing
maintainability, evolution and reliability of software systems.

Aspect Oriented Software Development (AOSD) is a new
programming paradigm that solves the problem of crosscutting
concerns existence in legacy systems. Aspect oriented
programming modularizes such crosscutting concerns in new
units called aspects and introduces ways for weaving aspect
code with the system code at the appropriate places [3]. The
success of aspect oriented programming directs software
engineers to a new research area called aspect mining. Aspect

mining is a specialized reverse engineering process which aims
at discovering crosscutting concerns automatically in existing
systems. This process improves system maintainability and
evolution and reduces system complexity. It also enables
migration from object-oriented to aspect-oriented systems in an
efficient way [4][5][6]. Aspect mining approaches vary
according to the type of crosscutting concerns symptoms they
search for. Code duplication is one of the main symptoms of
crosscutting concerns. It is considered a major problem for
large industrial software systems because it increases their
complexity and maintenance cost. So, many clone detection
techniques are used to find this duplicated code in legacy
systems and will be discussed in details in section 2. In this
paper, we present a clone detection technique to extract exact
clones from object-oriented source code using Differential File
Comparison Algorithm (DIFF).

The basic idea is to find different lines of code between two
source code files using Diff Algorithm. As a consequence, the
remaining lines of code in both files are identical and
considered clones. Clones can then be extracted from files.
Finding clones in source code as a symptom of crosscutting
concerns helps in improving system reusability and
maintainability which is the aim of aspect mining. In section 2,
previous work on clone detection techniques is presented. In
section 3, we describe the basic idea of the used technique to
detect clones in source code. In section 4, experimental work
and results are discussed. Finally, conclusion and future work
are presented in section 5.

II. PREVIOUS WORK

Previous studies report that about 5% to 20% of software
systems contain code duplication which is a consequence of
copying existing code fragments and then reusing them by
pasting with or without minor modifications instead of
rewriting similar code from scratch [7]. Therefore, it is
considered a common activity in software development.
Developers perform this activity to reduce programming time
and effort. However, this activity results into software systems
which are difficult to maintain. The reason is that if a bug is
detected in a code fragment, other similar code fragments have
to be checked for the same bug. Consequently, there is a need

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 3, No.8, 2012

138 | P a g e

www.ijacsa.thesai.org

for automated techniques that can find duplicated code
fragments in source code such as clone detection techniques.

A. Clone Detection Techniques

Clone detection techniques can be categorized into the
following [8]:

 String-based techniques (also called text-based

techniques): at the beginning, little or no

transformation in raw source code is performed; for

example, white spaces and comments are ignored.

Then, the source code is divided into a number of

strings (lines). These strings are compared according

to the used algorithm to find duplicated ones [9].

 Token-based techniques: use lexical analysis for

tokenizing source code into a stream of tokens used as

a basis for clone detection.

 AST-based techniques: use parsing to represent source

code as an abstract syntax tree (AST) [10]. Then,

clone detection algorithm compares similar sub-trees

in this tree.

 PDG-based techniques: use Program Dependence

Graphs (PDGs) to represent source code [11]. PDGs

describe the semantic nature of source code in high

abstraction such as control and data flow of the

program.

 Metrics-based techniques: hashing algorithms are

used in such techniques [12]. A number of metrics are

calculated for each code fragment in source code.

Then, code fragments are compared to find similar

ones.

B. Clone Terminology

When two code fragments are identical or similar, they are
called clones. There are four types of clones: Type I, Type II,
Type III and Type IV. Each of these four types of clones
belongs to one of two classes according to the type of similarity
it represents: textual similarity or functional similarity. In this
context, clones of Type I, Type II and Type III are categorized
under textual similarity and Type IV is categorized under
functional similarity [13].

 Type I: is called exact clones where a copied code
fragment is identical to the original code fragment
except for some possible variations in whitespaces
and comments.

 Type II: a copied code fragment is identical to the
original code fragment except for some possible
variations about user-defined identifiers (name of
variables, constants, methods, classes and so on),
types, layout and comments.

 Type III: a copied code fragment is modified by
changing the structure of the original code fragment,
e.g. adding or removing some statements.

 Type IV: in this type, clones have semantic similarity
between code fragments. Clones, according to this
type, are not necessarily copied from the original code
because sometimes, they have the same logic and are
similar in their functionalities but developed by
different developers.

III. PROPOSED TECHNIQUE

In this paper, a clone detection technique is presented using
Differential File Comparison Algorithm (DIFF) [14] to detect
exact clones in source code files. Our clone detection technique
passes through three stages:

 Source code normalization: this stage acts as a
preprocessing stage. Our clone detection technique is
text-based and, therefore, a little transformation of the
source code is needed. White spaces and comments
are removed at this stage.

 Differential File Comparison: This is the main stage
of the proposed technique. The Differential File
Comparison algorithm (DIFF) [14] determines
differences of lines between two files. It solves the
problem of ‘longest common subsequence’ by finding
the lines that are not changed between files. So, its
goal is to maximize the number of lines left
unchanged. An advantage of the DIFF algorithm is
that it makes efficient use of time and space. So, this
idea is used to find differences in source code lines
between two files.

 Extracting exact clones: After finding differences in
source code lines between the two given source code
files using the DIFF Algorithm, the remaining lines of
code in both files are identical and considered clones.
The complement of the difference between 2 files is
determined which results in extracting exact clones
from two given source code files.

The main steps of DIFF algorithm are summarized as
follows [14]:

1. Determine equivalence classes in file 2 and associate
them with lines in file 1. Hashing is used to get better
optimization when comparing large files (thousands of
lines).

2. Find the longest common subsequence of lines.
3. Get a more convenient representation for the longest

common subsequence.
4. Weed out spurious sequences called jackpots.

IV. EXPERIMENTAL WORK AND RESULTS
Our experiment was conducted on a simple case study

consisting of two source code files implemented in the C#
programming language. These files have some differences and
similarities in their lines of code as shown in figure 1. At the
beginning, the two files are normalized by removing white
spaces and comments. Then, they are compared using DIFF
algorithm and the differences in source code lines between both
files are highlighted as shown in figure 2.

Figure1. Two source code files

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 3, No.8, 2012

139 | P a g e

www.ijacsa.thesai.org

Figure1. Two source code files

Finally, exact cloned lines of code are detected in both files

after removing those differences from source code lines as
shown in figure 3.

Clone Detective tool [15] [16] is a Visual Studio integration
that allows analyzing C# projects for source code that is
duplicated somewhere else. Clone Detective tool is supposed to
detect type I and type II clones but it may miss some clones as
explained in [17].

 Figure3. Cloned lines of code

By comparing our results with those obtained from the
Clone Detective tool for Visual Studio 2008 using the same
case study; it is found that the Clone Detective tool cannot
detect all the differences in lines of code whereas our proposed
technique can do that.

Table 1 shows the results of comparing the two tools
regarding the total number of lines in each file and the total
number of cloned lines between two files with setting clone
minimum length equals to one. It is noticed that our proposed
technique can detect all exact cloned lines which are actually
14 lines but Clone Detective tool detects 24 cloned lines and
this is not accurate because only 14 lines are exact clones and
other lines are different.

V. CONCLUSION AND FUTURE WORK

We present a simple clone detector to discover code cloning
which is a symptom of crosscutting concerns existence in
software systems. Detection of code clones decreases
maintenance cost, increases understandability of the system and
helps in obtaining better reusability and maintainability which
is the aim of aspect mining .The technique is experimented on a
simple case study (two source code files) and finally exact
clones are extracted from source code.

We consider this tool as a starting point towards a complete
clone detection system. In the future, this tool can be extended
to detect type II and type III clones and mine source code
written in other programming languages, not only C#. It can
also be extended to work on more than two source code files.

class Program {
 public int sumElements(int[] arr){

 int sum = 0;

 for (int i = 0; i < 5; i++)
 {

 sum += arr[i];

 }
 return sum;

 }

 static void Main(string[] args)
 {

 Program p = new Program();

 int result;
 int avg;

 int arr = new int[5];

 int size = arr.Length;
 Console.WriteLine("Enter

numbers:");

 for (int i = 0; i < 5; i++)

 arr[i]=

int.Parse(Console.ReadLine());

// sum of array elements
 result = p.sumElements(arr);

 // average of array elements

 avg = result / size;
 Console.WriteLine("Addition is:"

+ result);

 Console.WriteLine("Average is:"
+ avg);

}}

class Prog {
 public float sumElement(float[] arr) {

 int sum = 1;

 for (int i = 0; i < 5; i++)
 {

 sum += arr[i];

 }
return sum;

}

 static void Main(string[] args)
 {

 Prog p = new Prog();

 float result;
 float avg;

 float arr = new float[5];

 int size = arr.Length;
 Console.WriteLine("Enter numbers:");

for (int j = 0; j < 5; j++)

arr[j] = int.Parse(Console.ReadLine());

// sum of array elements

 result = p.sumElements(arr);

 // average of array elements
 avrg = result / size;

Console.WriteLine("Addition is:" +

result);
Console.WriteLine("Average is:" +

avg);

}}

Comparison
Total number

of lines

Total number

of cloned lines

Proposed

Technique

Source 26 14

Destination 26 14

Clone

Detective

Source 26 24

Destination 26 24

Figure2. Difference between lines of code

Table1.Comparison of results obtained by the proposed technique and the

Clone Detective tool

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 3, No.8, 2012

140 | P a g e

www.ijacsa.thesai.org

REFERENCES

[1] Arie van Deursen, Marius Marin and Leon Moonen, “Aspect Mining and
Refactoring”, In Proceedings of the First International Workshop on
REFactoring: Achievements, Challenges, Effects (REFACE03), 2003.

[2] Bounour Nora and Ghoul Said, “A model-driven Approach to Aspect
Mining”, Information Technology Journal ,vol.5, 2006 , pp. 573-576.

[3] M.Marin, A.vanDeursen and L.Moonen ,“Identifying Crosscutting
Concerns Using Fan-In Analysis”,ACM Transactions on Software
Engineering and Methodology, Vol. 17, December 2007.

[4] Bounour Nora, Ghoul Said and Atil Fadila, “A Comparative
Classification of Aspect Mining Approaches”, Journal of Computer
Science,vol. 2 , pp. 322-325, 2006.

[5] Chanchal Kumar Roy, Mohammad Gias Uddin, Banani Royand Thomas
R. Dean,“Evaluating Aspect Mining Techniques: A Case Study”, 15th
IEEE International Conference on Program Comprehension (ICPC'07),
2007.

[6] Andy Kellens, Kim Mens, and Paolo Tonella, “A Survey of Automated
Code-Level Aspect Mining Techniques”,In Transactions on Aspect
Oriented Software Development, Vol. 4 (LNCS 4640), pp. 145-164,
2007.

[7] Chanchal Kumar Roy and James R. Cordy, “A Survey on Software
Clone Detection Research”, Technical Report No.2007-541, School of
Computing,Queen's University, KingstonOntario, Canada, September
2007.

[8] Magiel Bruntink, “Aspect Mining using Clone Class Metrics”, In
Proceedings of the 1st Workshop on Aspect Reverse Engineering, 2004.

[9] Kunal Pandove,“Three Stage Transformation for Software Clone
Detection”, Master Thesis,Computer Science and Engineering
Department, Thapar Institute of Engineering and Technology, Deemed
University,May 2005.

[10] Ira D. Baxter, Andrew Yahin,Leonardo Moura, Marcelo Sant’Anna and
Lorraine Bier,“Clone Detection Using Abstract Syntax Trees”, In
Proceedings of the 14th International Conference on Software
Maintenance (ICSM'98), pp. 368-377, Bethesda, Maryland, November
1998.

[11] Jens Krinke, “Identifying Similar Code with Program Dependence
Graphs”, In Proceedings of the 8th Working Conference on Reverse
Engineering (WCRE'01), pp. 301-309,Stuttgart, Germany, October
2001.

[12] Jean Mayrand, Claude Leblanc and Ettore M. Merlo, “Experiment on the
Automatic Detectionof Function Clones in a Software System Using
Metrics”, In Proceedings of the International Conference on Software
Maintenance (ICSM '96),1996.

[13] Yogita Sharma “Hybrid Technique for Object Oriented Software Clone
Detection”, Master Thesis,Computer Science and Engineering
Department,Thapar University, June 2011.

[14] J.W.Hunt and M.D.McIlroy, “An Algorithm for Differential File
Comparison”, Bell Laboratories, Murray Hill, New Jersey, 1976.

[15] http://clonedetectivevs.codeplex.com, last accessed Augest 2012.

[16] Elmar Juergens, Florian Deissenboeck and Benjamin Hummel,
“CloneDetective–A Workbench for Clone Detection Research”, In
Proccedings of the 30th International Conference on Software
Engineering (ICSE), 2009.

[17] Chanchal K. Roy, James R. Cordy and Rainer Koschke,“Comparison
and Evaluation of Code Clone Detection Techniques and Tools: A
Qualitative Approach”, Science of Computer Programming Journal,
February 2009.

AUTHORS PROFILE

Rowyda Mohammed Abd El-Aziz is currently a
Software Developer at the Ministry of Planning, Cairo,
Egypt. She worked as Teaching Assistant in Modern
Sciences and Arts University in Egypt for four years. She
is a Masters Student at the Computer Science Department,
Faculty of Computers and Information, Helwan
University, Cairo, Egypt. Her current research interests
include software engineering and Human Computer

Interaction.

Amal Elsayed Aboutabl is currently an Assistant
Professor at the Computer Science Department, Faculty
of Computers and Information, Helwan University,
Cairo, Egypt. She received her B.Sc. in Computer
Science from the American University in Cairo and both
of her M.Sc. and Ph.D. in Computer Science from Cairo
University. She worked for IBM and ICL in Egypt for
seven years. She was also a Fulbright Scholar at the

Department of Computer Science, University of Virginia, USA. Her current
research interests include parallel computing, image processing and software
engineering.

Mostafa-Sami M. Mostafa is currently a Professor
of computer science, Faculty of Computers and
Information, Helwan University, Cairo, Egypt. He
worked as an Ex-Dean of faculty of Computers and
Information Technology, MUST, Cairo. He worked also
as an Ex-Dean of student affairs and Ex-Head of
Computer Science Department, faculty of Computers and
Information, Helwan University, Cairo, Egypt. He is a
Computer Engineer graduated 1967, MTC, Cairo, Egypt.

He received his MSC 1977 and his PhD 1980 from University of Paul Sabatier,
Toulouse, France. His research activities are in Software Engineering and
Computer Networking. He is awarded supervising more than 80 Masters of Sc.
and 18 PhDs in system modeling and design, software testing, middleware
system development, real-time systems, computer graphics and animation,
virtual reality, network security, wireless sensor networks and biomedical
engineering.

http://clonedetectivevs.codeplex.com/

