
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 3, No. 10, 2012

22 | P a g e

www.ijacsa.thesai.org

A semantic cache for enhancing Web services

communities activities: Health care case Study

Hela Limam

Department of Computer Science

High Institute of Management

Tunis, Tunisia

Jalel Akaichi

Department of Computer Science

High Institute of Management

Tunis, Tunisia

Abstract— Collective memories are strong support for enhancing

the activities of capitalization, management and dissemination

inside a Web services community. To take advantages of

collective memory, we propose an approach for indexing a health

care Web services community’s’ resources with semantic

annotations explaining and formalizing its informative content.

Then we show how the health care Web services community’

members exploit their collective memory by expressing their

queries allowing them searching relevant resources in order to

perform their activities.

Keywords- Web services community; semantic description; health

care.

I. INTRODUCTION

Despite their visible advantage and accessibility, the rapid
growing number of published Web services prevents users or
requestors from finding easily and efficiently the services
relevant to their specific needs. Hence, the concept of
communities of Web services has emerged for gathering Web
services according to their functionalities in order to ease and
improve the process of Web services discovery in an open
environment like the Internet. By providing a centralized
access to several functionally-equivalent Web services via a
unique endpoint, communities enable processing complex
users’ queries that a single Web service cannot satisfy.

The cornerstone of building Web services communities is
their ability to be queried transparently and easily by users,
which aim to satisfy their informational needs in a satisfactory
time and in a pertinent retrieval. Nevertheless, processing a
user query is not an easy task and may involve the access to a
number of distributed communities in order to locate Web
services that are capable of answering the query. Those
queries are sometimes complex and short-living. Hence, it
seems to be beneficial to conserve them for a future reuse and
in order to be shared by communities’ members who have
similar informational needs.

In this context, collective memories appear to be very
attractive to use in order to enhance sharing useful dedicated
reusable fragments of know-how inside a Web services
community. Enhancing Web services communities activities
using a semantic cache memory highlights the interest of
capitalizing formulated queries to the cache memory and in
general the expert how-know of the community in the field of
the information discovery. Hence, the process of researching

resources for answering queries becomes based on a formal
manipulation of annotated resources.

In our paper we propose a model for Health care services
communities which enables semantic caching of queries, we
provide a formal description of queries and the cache content
and we detail query processing inside a community using the
semantic cache.

The rest of this paper is organized as follows: In Section 2,
we review previous research on semantic caching as well as
other related issues. A Health care community model is
defined in Section 3. Section 4 proposes a semantic cache
model suitable for Web services communities. Section 5
discusses the semantic cache organization and the semantic
caching query processing strategies. Finally, we summarize
our work and discuss future research in Section 6.

II. RELATED WORKS

A review of research projects aiming at assisting
community activities by a collective memory as the european
project SevenPro [1], the projects ANR e-WOK HUB [2] and
Immunosearch [3] or the projet C3R [4] highlights the need to
capitalize requests made by users in suitable databases to
allow their authors to reuse or exchange them with other
community members. More generally, capitalization
approaches to information retrieval becomes a real issue in
many areas.

Indeed, specific strategies are implemented by experts in a
specific field in order retrieve information necessary for their
activities [5] and are often difficult to acquire by novice users.
These strategies, more and more critical with the increasing
specialization and knowledge bases are capitalized and are
rarely used in either the search tools like Google or in the
portal domain [5].authors in [5] propose an approach to clarify
the critical procedures of information retrieval in the medical
field using what they call the search strategies portals .Starting
with a set of standard questions in the field, they define a set
of patterns representing research procedures. A search
procedure is represented by an ordered set of subgoals and for
each search procedure, links to relevant sources of information
are established

Authors [6] offer a browsing environment of Web
resources. They distinguish among three levels of knowledge:
(i) a medium level of knowledge that brings web resources in
the field of application (ii) Represents a level of knowledge

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 3, No. 10, 2012

23 | P a g e

www.ijacsa.thesai.org

that brings together the meta-data resources of the previous
level and (iii) a level of knowledge transmission that offers
courses (called "e-course") for web resources through the
meta-data associated with them. E-courses are composed of
steps characterized by an intention or a title, subject and an
illustration. The illustrations are Web resources related to e-
course step.

Examples of research procedures for dynamic navigation
systems also exist in online learning-based models of semantic
Web. In [7], a model for the pedagogical approach is adopted
by an assembly of requests parameterized and resources whose
annotations meet these requests up educational material are
presented dynamically to the learner navigating through the
system.

In conclusion we can say that there has been much interest
in the area of applying semantic caching in Web services and
communities in general. Some of the proposed approaches
only work in the field Web communities while others limit
queries to Web services. Hence previous works either ignore
the possibility of applying semantic cache for enhancing and
performing query processing among communities of Web
services .The objective of our work is to extend the existing
semantic caching work along several dimensions. First we
present a formal semantic caching model for Web services
communities, and then we explore the semantic caching query
processing strategies. We examine how to efficiently answer
queries against the cache. Finally, we validate semantic cache
performance through a detailed Health care case study.

III. HELTH CARE WEB SERVICES COMMUNITIES MODEL

Communities of Web services are virtual spaces that can
dynamically gather different Web services having
complementary functionalities in order to provide composite
services with high quality. Some approaches have been
proposed to organize communities of Web services. In a
previous work we proposed a Web services communities
design language, called WSC-UML[12], which increases
the expressiveness of UML for Web services communities
and guides their design. Stereotypes and graphical
annotations have been added to UML diagrams in order
to distinguish between the different aspects in a Web
services community. WSC-UML was used to model Web
services communities in general. The studied formalism is
suitable for modeling a Health care community in a way that
enables querying Health care Web services.

In this section we introduce a WSC-UML model for a
Health care community and we specify its associated Web
services. The Health care community is designed to combine
data from the large ancillary services, such as pharmacy,
laboratory, and radiology, with various clinical care Services
.It has an identifier and is described by a set of attributes. It is
composed of a set of Health care Web services: Insurance
Service, Care Service, Patient Refferal Service, Physician
Refferal Service and scheduling Service. Web services insider
a community are associated to each other’s with peer
relationships. Each Web service modeled as a class in WSC-
UML class diagram and is described by a set of attributes as
shown in figure 1. The number of integrated Web services
involved in the Health care community is dependent upon the

data structures and has to provide an interface that allows
clinicians to access the silo systems through a portal.

Figure 1. WSC-UML Class Diagram of a Health care community

IV. A SEMANTIC CACHE MODEL FOR WEB SERVICES

COMMUNITIES

A. The system general architecture

We propose a model for building, reusing and sharing
queries for a pertinent information retrieval. The proposed
model takes as input queries expressed by users then
transforms them into a format that allows their reuse. We
focus on the construction the community semantic cache that
can be seen as episodic memories in which the research
approaches are built dynamically based on queries. We also
focus on the scenario of the information retrieval that we call
the process of finding information. The general architecture of
our system is exposed in figure 2.

Figure 2. The semantic cache general architecture

B. Formal definition of the semantic cache content

The queries formulation in our work is partially inspired
by the work [8]. Our approach distinguishes itself by the fact
that it extends and adapts the cited work in the field of Web
service communities. We consider that queries addressed to
communities take the form of select and project queries,
although the proposed model can be extended to handle other

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 3, No. 10, 2012

24 | P a g e

www.ijacsa.thesai.org

more complicated queries .the formal definition of the
semantic cache is given in this section, later we discuss how to
store and organize the semantic cache. The Web services
community model presented in the previous section is
considered a relational database where each modeled class is a
relation. For example the class Web service is a relation. Each
relation consists of a relation schema and a relation instance.
An instance of the relation << Community Member>> is a set
of members satisfying the constraint of having the same
number of the attributes described in the Community Member
schema.

Suppose that the examined community C consists of a set
of modeled classes cl1, cl2,.., cln

C={ cli , 1≤ i ≤n }

Further let Acli stand for the attribute set defined by the
schema of the class cli and A present the attribute set of the
whole community, then we have:

A=⋃Acli, 1≤ i ≤n

Before defining a semantic cache, we first give the
predicates, through which a semantic cache is constructed.

Definition 1: Given a community C={cli} and its attributes
set A =⋃Acli, 1≤ i ≤n, a Compare Predicate of C, P, is of the
form P=a op c,

where a ϵ A, op ϵ {≤, <, ≥,>,=},c is domain value or a
constant.

In fact, a semantic cache is used to store annotated results
of queries. It is composed of a set of Semantic Query Result.
A Semantic Query Result is an original, decomposed, or
coalesced query result. Its definition is consistent with that of
a materialized view [9]. To further simplify the problem, we
assume that the selection condition of a query is an arbitrary
constraint formula of compare predicates, namely, a
disjunction of conjunctions of compare predicates.

Definition 2: Given a community C= {cli} and its
attributes set A=⋃Acli,1≤i≤n, a Semantic Query Result is a
tuple <CC , SA , SP, SC> where SC=π SAσ SP(CC), SRϵC, SA⊆
ACC and SP = P1 ⋁ P2 ⋁…. Pm where each Pj is a conjunctive of
comparative predicates, i.e., Pj=bj1⋀ bj2⋀ bjl,

Each bjl is a compare predicate involving only the attributes
in ACC.

In definition 2, CC and SA define the class and attributes
involved in computing S, respectively, SP indicates the select
condition that the tuples in S satisfy. Hence, these three
elements specify the semantic information associated with S.
The actual content of S is represented by SS. From the
restrictions added, we can see that semantic query results are
the results of Select-Project operations, with the selection
conditions containing only compare predicates. Before queries
get answered, their contents are empty (i.e., QC=Ф).
Therefore, we formally define a query just as we define a
semantic query result.

Definition 3: A Query Q has the form Q= <QC,QA,QP ,QS
> A semantic cache is defined as a set of semantic queries
results. To reduce space overhead, the cached semantic queries

results do not overlap with each other. In the following, we
first give the concept of disjointed queries results, and then
formally define a semantic cache.

Definition 4: Two Semantic queries results Si =<SiC ,SiA
,SiP ,SiS > and Sj =<SjC ,SjA ,SjP ,SjS > are said to be disjointed
if and only if :

1. SiA∩SjA =Ф or

2. SiP ⋀ SjP is unsatisfiable.

Definition 5: A Semantic Cache, S C,is defined as
SC={semantic query result Si} where ∀ j, k(Sj ϵSC ⋀ Sk ϵ SC
⋀ j≠ k) Sj and Sk are disjointed).

C. Semantic cache organization

Several approaches tackle the problem of the physical
storage of semantic queries results. The work in [10]stores
queries results in tuples, and associates every query with a
pointer to a linked list of the corresponding tuples. This
approach works fine for select-only queries and memory
caching. The key advantage is easy maintenance: tuples can be
added, deleted, or moved between segments conveniently.
However, this linked list scheme is not appropriate for disk
caching, since it may result in too many I/O operations.

Moreover, when select-project queries are cached, the
resulting tuples for different segments are no longer at the
same length. Hence, even for memory caching, its advantage
in maintenance is lost. Another noticeable disadvantage for
this approach is the large space overhead caused by the tuple
pointers.

In our case, semantic cache is composed of two parts: the
content and the index. Every semantic query result is stored in
one or multiple linked pages, and is associated with a pointer
pointing to its first page in the memory (disk) cache. Each
page contains a query result, rather than the community
classes. The cache space is also managed at a page level,
which makes semantic query result allocation and deallocation
algorithms more straightforward and simpler.

For allocation, if there are enough free pages to hold a
query result, and then allocate the pages to it; for deallocation,
just mark the deallocated pages as free. The index part
maintains the semantic as well as physical storage information
for every cached query result. In what follows, we list the
basic items kept in the index. For every cached query result,
we have:

 The name S, the community class CC, the attribute set

SA, and the selection predicate SP

 The pointer pointing to the first page that stores the

query result

 The timestamp indicating when the query result was

last visited STS

The index structure proposed here is consistent with the
formal definition of the semantic cache. In addition to the four
basic components of the semantic query result, we further add
other items for maintenance use, such as STS. The semantic
cache index is more clearly illustrated through the following
Example 1.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 3, No. 10, 2012

25 | P a g e

www.ijacsa.thesai.org

Example 1: Consider a health care community with two
classes: Patient referral service and scheduling services

Patient referral service (Patient-ID, Paddress, Ptelephone,
Pfirst-name, Plast-name, P Age, Pinsurance-Type) and

Scheduling Services (Schedule-ID,Sdate, Stime,Slocation);
also suppose that the cache contains four queries result:

 S1: Select Plast-name From Patient referral service

Where 20 < PAge < 60;

 S2: Select Pfirst-name, Plast-name From Patient

referral service Where PAge> 10;

 S3: Select Schedule-ID From Scheduling Services

Where SDate= 28/12/2010;

 S4: Select Slocation From Scheduling Services Where

Sdate > 10/12/2010 ;

Also, suppose that the first pages of the four queries results
are one, three, five, and six, respectively, and Si was last
visited at Ti, then the index is shown in Table 1.

TABLE 1. QUERIES RESULTS ORGANIZATION IN SEMANTIC CACHE

V. SEMANTIC CACHING AND QUERY PROCESSING

To process a query from a semantic cache, we first check
whether it can be answered by the cache. If yes, the locally
available results are computed directly from the cache. When
the query can only be partially answered, we trim the original
query by removing or annotating the already answered parts
and send it to the database server for processing. In this
section, algorithms for semantic caching query processing are
examined.

A. Theoretic Foundation

From the concept of Derivability defined in [11] we
introduce the following definition.

Definition 6: Consider a semantic query result
S=<CC,SA,SP ,SC > and a query Q= <QC,QA,QP,QS > ,we say Q
is answerable from S, if there exist a relational algebra
expression F containing only project and select operations, and
only involving attributes in SA, such that F(SC)≠Ф and ∀ t
(tϵF(SC)) ⇒ (t satisfies QP ⋀ t contains only attributes in QA)).
Furthermore, if F(SC)=QC, we say Q is fully answered from S;
otherwise, we say Q is partially answered from S.

From Definition 6, we know that the key to compute a
query from a cached segment is to find the function F, and to
make sure that F can be executed on the segment. Sometimes,

even the entire result of a query Q is contained in a segment S,
Q still is not answerable from S.

This is because some of the attributes needed in F cannot
be found in S. So, in Definition 6, we add an additional
restriction on F. The following Example 2 illustrates such a
point.

Example 2: Consider health care community and the
semantic cache described in Example 1, suppose there comes a
query Q = Select Pfirst-name, Plast-name From Patient
referral service Where(PAge> 5) ⋀ (Patient-insurrance-type=
Personal). Obviously, the result of Q is totally contained in S2,
since every tuple which satisfies (PAge > 10) ⋀ (Patient-
insurrance-type= Personal) will always satisfy (PAge > 5).
However, Q cannot be computed from S2, because we cannot
find an F as specified in Definition 6.

Intuitively, Q seems to be computed from S2 by a function
π Pfirst-nameσ (PAge > 10) ⋀ (Patient-insurrance-type=
Personal)

But the attribute“Patient-insurrance-type” used in this
function is not in S2 after the projection.

Definition 7: Consider a query Q= <QC,QA,QP ,QS > , the
predicate attribute set, QPA , contains all the attributes that
occur in QP , i.e., QPA = { a |a is an attribute, and a occurs in
QP}. Consider a semantic query result S =<CC,SA,SP ,SC > , a
query Q= <QC,QA,QP ,QC > , and Q’s predicate attribute set
QPA . Then we have:

 Statement 1: If CC = QC, SA ∩ QA ≠Ф, QP ⋀SP is

satisfiable by CC, and QPA ⊆ SA, then Q is

answerable from S.

 Statement 2: If CC = QC, QA ⊆ SA, QP⇒SP , and and

QPA ⊆ SA, then, Q is fully answered from S.

Definition 8: Consider a semantic segment S =<CC,SA,SP
,SC>. Let Y be the set of all attributes uniquely determined by
the attributes in the attribute set X, with respect to SP.If X
⊆SA, we say S is an extensible semantic segment, SA ⋃Y
,denoted by SA

+
 is called the extended attribute set of S, and

the semantic query result S= <CC,SA,SP,SC > is called the
extended query result of S. Since SA is uniquely determined by
X with respect to SP , if a tuple consisting of attributes in X
satisfies SP , when extended to contain attributes in SA

+
, it will

also satisfy SP .

This makes it possible to extend S to S
+
 Notice that for

each extensible query result, there could exist multiple
different extended attribute sets, and hence multiple different
extended squeries results. To investigate how to use extended
segments in query processing, we examine Example 2 again.
Suppose “Pfirst-name” is the key of “Patient referral service”
class, thus other attributes of “Patient referral service” can be
uniquely determined by “Pfirst-name” Hence, S2 is an
extensible query result. Clearly, “Patient-insurrance-type” can
be uniquely determined by “Pfirst-name” To form S2

+
, we

retrieve the tuples containing both “Pfirst-name” and “Patient-
insurrance-type” from the community knowledge base append

S

CC

SA

SP
SC STS

S1
S2

S3

S4

Patient referral

service

Patient referral
service

Scheduling

Service

Scheduling

Service

Plast-name

Pfirst-name,

Plast-name
Schedule-ID

Slocation

20 < PAge < 60

PAge> 10

SDate=
28/12/2010

Sdate >

10/12/2010

1
3

5

6

T1
T2

T3

T4

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 3, No. 10, 2012

26 | P a g e

www.ijacsa.thesai.org

them to S2C according to the value of “Pfirst-name”. After that,
Q can be computed from S2

+
.Therefore, we have:

Statement 3: Consider an extensible query result
<CC,SA,SP ,SC > and a query <QC,QA,QP ,QS > and suppose
SA+ is an extended attribute set of S, and S+ is the extended
query result of S with respect to SA+, QPA is Q’s predicate
attribute set. Then, we have:

1. If CC= QC, SA
+
 ∩QA ±Ф, QP ⋀ SP is satisfiable,and

QPA ⊆ SA
+
, then Q is answerable by S

+.

2. If CC= QC, QA ⊆ SA, QP ⇒ SP , and QPA⊆ SA
+
, then Q

can be fully answered by S
+
.

Definition 9: Consider a semantic segment S=<CC,SA,SP
,SC >, suppose KA is the primary key of CC. If KA ⊆ SA, we say
S is a key-contained query result.

Definition 10: Consider a key-contained query result

S=<CC,SA,SP ,SC >, and a query =<QC,QA,QP ,QS > and
suppose QPA is its predicate attribute set. Then, we have:

1. If CC= QC, QP ⋀ SP is satisfiable, then Q is answerable

by S+< CC, SA,QA ∪QPA,SP ,S
+

C >.

2. If CC= QC, QP ,SP , then Q can be fully answered by

S
+

= < CC, SA,QA,QP A,SP ,S
+

C > .

B. Query processing

Since a community does not store Web services locally,
processing the query requires locating Web services that are
capable of answering the query. These Web services can be
selected from the local members of the community or from the
semantic cache. We propose a collaborative query processing
technique that consists of two steps:

 Dividing the query into parts when put together, satisfy
all constraints expressed in the query

 Resolving the query by sending it to the selected parts.

For the first step, we adopte a query rewriting algorithm,
which takes as input the community classes S=<CC,SA,SP ,SC
>, and the query Q =<QC,QA,QP ,QS > then produces the
following output:

 Qlocal: the part of the query Q that can be answered by
the community’s local semantic queries results S, that
is, the attributes specified in the query that are
supported by the local members. It also gives the
combination of the local members that can answer all
(or part of) the query.

 Qrest: the part of the query that cannot be answered by
the local queries results. The community will identify
any external members who can answer this part of the
query. Hence, Qrest is forwarded to peers. The
expected answers of the forwarding is the combination
of the external members that are capable of answering
Qrest.

Relationship between Q and S fall into five types as
described in figure 3.

Figure 3. Query and semantic query result relationships

To summarize the query rewritwing work discussed in this
section, we present Query Rewriting Algorithm, which
rewrites a query Q via a key-contained semantic query result S
which is defined on the same relation as Q.

QUERY REWRITING ALGORITHM

Query Rewrit (Query Q, Seamtic query result S, Query lq,
Query aq, Query rq1, Query rq2, int type), to rewrite a query
Q via a semantic query result S.

Input: Query Q; key-contained semantic query result S

Output: local Query lq; Amending Query aq; Rest Query
rq1, rq2; Tr Type type

Procedure: {

KA←S’s key attribute set;

A1←(QA∩SA) ⋃KA;A2←(QA-SA)⋃KA;

IF QA⊆SA {

IF QP⇒SP {

/***** Case 1*****/

type = 1;

IF (QPA⊆SA) THEN aq = NULL; ELSE

aq = πKA σQP (QR)†;

lq = πQA∪KA σQP (SC)†

rq1 = rq2 = NULL; return;}

IF (QP⋀ SP is satisfiable) {

/***** Case 2*****/

type = 2;

IF (QPA⊆SA) THEN aq = NULL; ELSE

aq = πKAσ QP⋀SP (QR)†;

lq = πQA⋃KA σ QP (SC)†;

rq1 = πQA⋃KA σ QP⋀¬SP (QR);

rq2 = NULL; return;} }

IF (QA⊆SA) does not hold {

IF (QP⇒SP) {

/***** Case 3 *****/

type = 3; lq =π A1(SC)†; rq1 =π A2 σQP (QR)†;

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 3, No. 10, 2012

27 | P a g e

www.ijacsa.thesai.org

rq2 = aq = NULL; return; }

IF (QP⋀SP is satisfiable) {

/***** Case 4 *****/

type = 4;

lq = πA1(SC);rq1=πQAπKA σ QP⋀¬SP(QR)

rq2 = πA2σQP⋀SP (QR)†; aq = NULL; return; } }

/***** Case 5 *****/

rq1 = Q; \ pq = aq = rq2 = NULL; type = 5; return;}

VI. CONCLUSION

We have presented a semantic cache mechanism designed
for enhancing querying a Health care community. Semantic
caching is based on the semantic representation of cached data
and processing queries by construction of local queries for
retrieving cached data and rest queries for fetching data from
remote servers. Hence, we proposed semantic cache
architecture for caching multiple queries addressed to the
community and considered all operational cases. For all types
of answers we have developed algorithms for query evaluation
against the cache content. In next works we tackle the problem
of Web service synchronization when changes occur on Web
services which may alter queries results stored in the semantic
cache. We also plan to propose replacement strategies for the
cache maintenance in order to tune them better to real user
profiles.

REFERENCES

[1] Cherif H,Corby O, Faron C, Khelif K,” Semantic annotation of texts
with RDF graph contexts” In Proceeding of the International
Conference on Conceptual Structures (ICCS’2008), pp.75 -82, 2008.

[2] Khalid Belhajjame, Mathieu d’Aquin, Peter Haase, Paolo Missier,
“Semantic hubs for geographical projects”. In Proceeding of Semantic
Metadata Management and Applications (SeMMA), workshop at ESWC,
pp. 3–17, 2008.

[3] Kefi L.,Demarkez M,Collard M, “A knowledge base approach for
genomics data analysis” In Proceeding of the International Conference
on Semantic Systems, Graz, Austria, 2008.

[4] Faron C,Mirbell I,Sall B, Zarli, “Une approche ontologique pour
formaliser la connaissance experte dans le modèle du contrôle de
conformité en construction ” ,19ème journées francophones d’ingénierie
des connaissances, Nancy, France,Capaudes Editions ,2008.

[5] BhavnaniS, Bichakjian C, JhonsonT, Little R, Peck F, Strecher
V, “Strategy hubs: Next generation domain protals with search
procedures”. In Proceeding of ACM Conference on Human Factors in

[6] Buffereau B, Duchet P, Picouet P, “Generating guided tours to facilitate
learning from a set of indexed resources”. In Proceeding of IEEE
International Conference on Advanced Learning Technologies (ICALT),
pp. 492, Athens, Greece: IEEE Computer Society, 2003.

[7] Yessad A, Faron C, Dieng R, LASKRI M, “Ontology-driven adaptive
course generation for web-based education”. In World Conference on
Educational Multimedia, Hypermedia and Telecommunications (ED
MEDIA), Vienna, Austria, 2008.

[8] Limam Hela, Akaichi Jalel, Oueslati Wided “WSC-UML: A UML
Profile for Modeling Web Services Communities: A Health Care Case
Study” International Journal of Advanced Research in Computer
Science, Vol.2, No.2, Mars 2011.

[9] Gupta , I. Singh Mumick, “Maintenance of Materialized Views:
Problems, Techniques, and Applications,” Data Eng. Bull.,vol. 18, no. 2,
pp. 3-18, 1995.

[10] S. Dar, M.J. Franklin, B.T. Jonsson, D. Srivatava, M. Tan, “Semantic
Data Caching and Replacement,” In Proceeding of VLDB Conf.,pp.
330-341, 1996.

[11] P.A. Larson, H.Z. Yang, “Computing Queries from Derived Relations”
In Proceeding of Very Large Databases, pp. 259-269, 1985.

[12] Limam, H., Akaichi, J., Oueslati, W:WSC-UML: A UML Profile for
Modeling Web services communities. Vol. 2, No,2, pp; 285-290,(2011).

