
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 3, No. 10, 2012

169 | P a g e

www.ijacsa.thesai.org

An Algorithm for Solving Natural Language Query

Execution Problems on Relational Databases

Enikuomehin A.O., Okwufulueze D.O.

Dept. of Computer Science,

Lagos State University

Lagos, Nigeria

Abstract— There continues to be an increased need for non-

experts interaction with databases. This is essential in their quest

to make appropriate business decisions. Researchers have, over

the years, continued to find a methodology that bridges the gap

that exist between information need and users satisfaction. This

has been the core in studies related to natural language

information retrieval. In this paper, we understudy the existing

methodology and develop a model to extend the proposition of (a)

Bhardwaj et al where a MAPPER was developed and

implemented on student database and (b) Nihalani et al. where an

integrated interface was used on relational databases. We

present a time saving executable algorithm that satisfies needed

conditions required to retrieve results of natural language based

queries from relational databases. Results of the experiment

shows that the performance index of the algorithm is satisfactory

and can be improved upon increasing the metadata table of the

relational database. This is a sharp diversion from the keyword

based search that has dominated most commercial databases in

use today. The implementation was deployed in PHP and the

retrieval time has compared favorably with earlier deployed

models. We further propose the extension of this work in the

areas of inculcating some fuzzy constraints to handle uncertainty

and ambiguity which are inherent in human natural language.

Keywords- Relational Database; Interface; Natural Language;

Query; SQL.

I. INTRODUCTION

Research work on developing a flexible Natural Language
Interface for Relational Databases has experienced expansion
at a very high rate [1]. This has led to continuous research on
natural language interfaces and query execution related issues.
However, the attention received in this area has not led to
significant and commensurate improvement in the existing
models for natural language information retrieval essentially
in the areas related to development of human useable
interfaces. This complexity has been linked with the
discreetness required for information extraction from relation
databases by the autonomous use of Structured Query
Language (SQL). SQL (Structured Query Language) is the
formal querying language for relational databases. This is an
expert language that is; users need to learn a specific syntax to
initiate an appropriate query. In contrast, most business
individuals are not experts in this domain and have causes to
relate with the relational databases. Obviously, there is a need
for this category of users to interact consistently with the
content of the relational databases. This paper discusses some
of the approaches that had been introduced to enable users

query the database using their natural languages rather than
SQL. These developed approaches enable database queries to
be performed by users with little or no SQL querying abilities.
However, some of the systems developed so far are not
flexible enough to deal with the complexity associated with
human users. Such earlier propositions force the user to adhere
to strict grammatical rules when formulating queries. For
appropriate usable results to be achieved, queries must be well
posed against the relational database. The NLIDB will assist
users to reformulate a natural language query into an
appropriate SQL. The use of NLIDB has experienced rapid
growth and continues to enjoy great support in terms of
research and contributions.

If the above holds, one wonders why it is necessary to put
some and energy in studying this process with the level of
attention received. The answer is simple: the information
seeking task becomes more complex and the available number
of information object increases. This increment is being
experienced by the day with the continuous exponential
growth of the internet. This consideration clearly establishes
that the existing tools for SQL generation may not be
appropriate for some strictly defined domains; we therefore
propose an algorithm that is flexible for extension to handle
the information growth. In Enikuomehin et al [9], a proposal
for handling natural language queries in LANLI was proposed.
The resulting implementation performed considerably better
than existing commercial interfaces however the time of
execution has been a concern to researchers. The formalism
involves that non SQL experts could pose a query which runs
through a preprocessor. We advance on this proposition to
save time and present a direct executable algorithm for natural
language retrieval

II. BACKGROUND

Relational Databases (a collection of data items organized
as a set of tables for easy storage, manipulation and retrieval
of data) are becoming ubiquitous as there continues to be an
increased need for people - mostly laypeople – to query
databases and gain access to information. There is hardly any
existing institution today that does not make use of a relational
database in managing the massive amount of data the
institution deals with. Such cases can be made for
Government, Education, Religion, and Business amongst
others. These relational databases however can be accessed
using formal methods, which require a great deal of learning
on the part of the user. This requirement is actually

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 3, No. 10, 2012

170 | P a g e

www.ijacsa.thesai.org

challenging because, a user who is a novice in the methods
used to access a database will find it really difficult to gain
access to important information he/she may need at the
moment. For example, consider a situation where an expert in
database access could not perform his/her duties due to
technical incompetence in the formulation of SQL queries. In
the early generation of computers, a lot of skills, gotten from a
formal and rigorous training in computer usage was required
to operate the computer. Subsequent generations dealt with
this rather difficult demand of an expert operator, and brought
about an era where the less experienced could also operate the
computer. To access a database, user must make use of a
formal language which the relational database understands.
One of such a formal language used to communicate with a
database is SQL (Structured Query Language). The use of
SQL requires some level of expertise, such expertise are
normally acquired after due training. This paper presents a
simple and easy-to-use natural language interface to enable
less non technical users to have the capability to retrieve
information from the relational database.

III. SOME RELATED EARLIER WORKS

Research in Natural Language Interface for Relational
Databases began as far back as the 20

th
 century. Since then the

study and interest has continued to grow tremendously such
that the area has become the most active in Human-Computer
Interaction. The first Natural Language Interface for
Relational Databases appeared in the 1970s[2], the NLIDB
system was called LUNAR[]. After the development of the
first NLIDB, many were built which were supposed to be an
improvement on the apparent flaws of LUNAR. The
presentation and acceptance of LUNAR was huge. The reason
for such huge success with NLIDBs includes the fact that there
are real-world benefits or payoffs that can be derived from this
area of study, other fact is that the earlier experimented
domain was a single domain where execution of non complex
systems are easy and easily adaptable. Same feet were not
achieved in the area of using complex databases. [3] we
highlight below, the development of some NL interfaces.

A. Lunar (1971)[4]

Man had accomplished the complex task of both having a
physical presence on the moon and that of positioning
satellites in space that can bring results from observations
done on the moon. Information of rock samples brought back
from the moon, for example, chemical information were stored
in a database, while literature reference on various samples
were stored in another database. LUNAR helped provide
answers to queries about any of the two information about a
rock sample by the use of these databases. LUNAR had
linguistic limitations and was able to handle 78% of user-
requests.

B. Philiqa [Philips Question Answering Machine](1977)[5]

This system works by having a clear-cut distinction of the
syntactic parsing and semantics of the user-defined query. It
has three layers of semantic understanding:

a. English Formal Language

b. World Model Language

c. Database Language

Together, these three layers work to answer user-defined
queries. Users did not achieve so much acceptance as the
earlier developed LUNAR.

C. Ask (1983)[6]

Ask was a complete information management system with
an in-built database and the ability to communicate with
multiple external databases using several computer
applications which are accessible to users through the user’s
natural language query. Learning is the ability of a system to
experience change based on a certain experience with an input
such that it can perform an activity better and more efficiently
next time. Since ASK had the ability to be taught new
concepts by the user during conversation with the user, it can
be said that ASK was a learning system.

D. Team (1987)[7]

TEAM was an NLIDB whose developers concerned
themselves with portability issues, as they wanted it to be
easily implementable on a wide range of systems without
compatibility issues. It was designed to be easily configured
by database administrators with no knowledge of NLIDB.
These feet affected the functionality of TEAM.

E. Precise (2004)

PRECISE introduced the concept of Semantically
Tractable Sentences which are sentences whose semantic
interpretation is done by the analysis of some dictionaries and
semantic constraints.

It was developed by Ana-Maria Popescu, Alexander Yates,
David Ko, Oren Etzioni, and Alex Armanasu in 2004 at the
University of Washington [8].

When a natural language query is given to PRECISE, it
takes the keywords in the sentence of the query, and matches
the keywords to corresponding database structures. This, in
fact is the major strength of PRECISE. PRECISE does this
matching in two stages. The first is to narrow down the
possible keywords using the Maximum Flow algorithm which
finds a feasible, constraint-satisfying flow through a Flow
Network having just a single source and a single sink, such
that the flow is maximum; where a flow network is a directed
graph in which each edge has a capacity and each edge
receives a flow. By using the Maximum Flow algorithm, the
maximum number of keywords is obtained, thereby increasing
the chance of the natural language sentence to be accurately
transformed to a formal SQL query as there will be enough
keywords to compare with the PRECISE dictionary. The
second stage is to analyse the syntactic structure of the
sentence. PRECISE also has its own limitations.

Generally, some major flaws have been common to these
interfaces and their ability to handle natural language
processing. Users’ feedback system has not been thoroughly
handled in existing systems. Such systems learn when the
user prompts command such as save text on the interface.
This is worsened by the fact that, though they are considered
as a NLI, their knowledgebase has been a concern in recent
times such that can only get results that keyword based. The
area of natural language that can be handled by NLIDBs is just

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 3, No. 10, 2012

171 | P a g e

www.ijacsa.thesai.org

a small subset, and this subset is even difficult to define due to
Natural language complexity and the existence of ambiguity.

IV. OVERVIEW OF THE PROPOSED SYSTEM

In Enikuomehin et al[9], an NLI for RDB was developed.
In that work, the system developed was named LANLI where
a set of operations is defined on a Local Appropriator. The
local appropriator allows for both semantic and syntactic tree
generation for query execution. The highlight of the
proposition is that the matching algorithm would have been
generated before the query formulating tree is used. The
advantage is in the area of effective retrieval due to accurate
tree formation for both the database and the query. An
additional feature of the system is the use of a knowledge
dictionary like table where the Natural Language presented by
users is assumed to have some knowledge interpretation. Same
is similar to the work of NIHALIA et al[10] where an
interface was designed on plain relational database. The
common factor in the above schedule is that they both operate
as a query executor that does not require any formal syntactic
presentation. In the implementation of the proposed algorithm,
the following process is undergone:

 User’s natural language queries are accepted as input

to a given natural language interface.

 Data-transformation of the natural language query

into a formal SQL query is performed by an

underlying program without the knowledge of the

user.

 The SQL query is then delivered to the relational

database.

 The result of the query produced by the database is

accepted and transformed back into expressions in

the user’s natural language by the underlying

program.(this is the reverse operation of 3 define

above).

 This transformed result is then displayed to the user

as output.

The system can be integrated into the module of existing
commercial systems. The steps outlined above are necessary
for an efficient operation of an NLIDB. For experimental
purposes, the lecturer- course database of the department of
computer science is used a case study for the implementation
of the algorithm. The system is a combination of a database
and set of tables resident in it. This work introduces the use of
corpus in areas other than the strict information retrieval
domains. The execution process can be classed into phases
and presented as follows:

A. Input To The Natural Language Interface

To use an NLIDB, there must be a point of interaction
between the user and the system. This point of interaction
must be able to accept data (query in this case) in a form
expressed in the natural language of the user, and it must be
able to produce output in the same natural language format.

Because it is a point through which users can communicate
with the system using their natural language, it is therefore
called a Natural Language Interface. It should be noted that
for the purpose of this paper, the natural language used is
English Language. Thus the Natural Language Interface to be
used in this work is one that accepts English Language queries
as input.

B. Transformation Of Natural Language Query To Sql

Natural language is the language used for communication
by humans. This language is immediately understood
intuitively by humans without any further interpretation.
However, to carry on conversation with any component of the
computer system such as a database, one must make use of
some formal language which requires some special kind of
rigorous learning process for anyone to have a mastery over it.
Expressions in this rather artificial language must conform to
some unambiguous syntactic rules for there to be a meaningful
conversation between the human and the computer system.
Interaction with a database requires the use of a formal
language, whose expressions, unlike natural language
expressions, contain no ambiguities. Several Database
Management Systems DBMS) have their corresponding
language used to interact with them. The database used in this
project is the Relational Database. To interact with a relational
database, the language to be used is Structured Query
Language (SQL). Since the natural language interface collects
natural language expressions as input, this input has to be
converted to a corresponding SQL expression before the
database could understand the query of the user. Therefore,
there must exist a program or application whose job is to
retrieve the natural language input from the Natural Language
Interface, and do some transformation works on it to convert it
to an equivalent SQL query.

This application should be able to split the natural
language query into its constituent tokens, and through
comparisons with the contents of the corpus, it should be able
to single out keywords in the statement. With the use of these
keywords, and the use of a knowledge base (If-Then
knowledge base as used in this paper), the user’s query should
be able to be parsed semantically, enabling the formulation of
a corresponding SQL query which will then be passed to the
database. The use of a knowledge base implies that the system
will be domain dependent, thus it has to be reconfigured for
any new database system on which it is implemented. The
SQL query resulting from the transformation performed on the
natural language query will have to be passed from the
application to the database system itself. This transfer is
possible if there is an interface between the application and the
database system. This interface is usually inbuilt as a class or
subroutine in many programming languages. Thus the
language used for the application must possess the capability
to connect to the database. After processing the SQL query,
the RDBMS returns a result, this result set, occurring in less-
human-understandable format, should be manipulated, to
enable presentation in a natural language format. This is done
by the intermediate application program between the interface
and the database. In the human-readable format, the results are
then ready to be presented to the user.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 3, No. 10, 2012

172 | P a g e

www.ijacsa.thesai.org

V. DESIGN AND STRUCTURE OF THE PROPOSED NLIDB

Five steps are taken in the use an NLIDB and are described
below:

A. User’s Natural Language Queries Are Accepted As Input

To The Natural Language Interface:

The interface actually is the first thing a user should
encounter. Then the user gets started with the system by
entering a query in his/her natural language

B. A Data-Transformation Of The Natural Language Query

Into A Formal Sql Query Is Performed By An Underlying

Program:

In this stage, it will be observed that the natural language
query of the user is fed into the underlying application
program, which in turn transforms the user’s natural language
query into an appropriate SQL query. Thus, there exist an
interface between the Natural Language Interface and the
underlying application program. This interface is responsible
for presenting the natural language query from the user to the
application. This interface is for the sake of this project called
NL-Application Program Interface (NLAPI).

C. The Sql Query Is Then Delivered To The Relational

Database:

After the transformation of natural language query into
Structured Query Language, the application program having
first established a connection to the relational database, will
now transfers the SQL query to the RDBMS. The connection
established between the application program and the database
is made possible by the help of another interface called
Application Program-Database Interface (APDI). This
interface does the presentation of the corresponding SQL
query produced by the application program to the RDBMS.

D. The Result Of The Query Produced By The Database Is

Accepted And Transformed Back Into Expressions In The

User’s Natural Language By The Underlying Program:

This process is performed by the application program. The
application program receives the result of the SQL query, and
transforms it back into a form easily understandable by a
human user.

E. This Transformed Result Is Then Displayed To The User

As Output:

The interface here can be viewed as a reverse automated
machine that displays the output of the search process. This
makes the entire database search a cycle-like process.

VI. AN ALGORITHM FOR IMPLEMETATION

The first thing to be done with a user’s query, is to
tokenize the words in the user’s queries into the words found
in the corpus and the requests tables of the database. This
tokenization of words is done in such a way that erroneous
repetitions are eliminated. The algorithm for the execution is
given as:

query=the user’s query ;

tok=getTheFirstToken(query) ;

 i=0; j=0;

while (tokenStillExists(query)) {

 if(existsInCorpus(tok)){

 toUse[i]=tok;//This array contains

words found in the user's query and also in the

corpus

 i++;

 }

 if(existsInRequests(tok)){

 reqWord[j]=tok;

 term[j]=TColumnInRequest(tok);

 //TColumnInRequest(tok) is

 the value in the t column of

 requests table for the word

 r=tok

 j++;

 }

 tok= nextToken(query);

}//End of while loop

removeDuplicate(toUse);//Removes duplicates

from the user's query

 removeDuplicate(reqWord);//Removes

 duplicates from the array of non-entity-reference

terms in the array reqWord[].

 removeDuplicate(term);//Removes duplicates from

the array of requested data in the array term[].

Now that the user’s query have been tokenized and

separated into different sets. It must be noted that the user’s
query now tokenized into the array to Use can contain a
combination of general and specific words.

The general words in the array to Use is thus stored in the
array G and the specific words in toUse are stored in the array
S. This results in four different cases for which the execution
of the query differ. These cases are:

sizeOf(G)==0 and sizeOf(S)==0

sizeOf(G)==0 and sizeOf(S)!=0

sizeOf(G)!=0 and sizeOf(S)==0

sizeOf(G)!=0 and sizeOf(S)!=0

A knowledge base is created that caters for any one of the
above situations; however, a brief discussion is given here to
demonstrate what happens in any of the cases.

1. In the case where sizeOf(G)==0 and sizeOf(S)==0, that
is, there are no general and specific words in the arrays G and
S, this means that the query of the user does not contain any
word in the corpus, thus the query is invalid. This message
will be shown to the user.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 3, No. 10, 2012

173 | P a g e

www.ijacsa.thesai.org

2. In the case where sizeOf(G)==0 and sizeOf(S)!=0, that
is, there are no general words but there are specific words in
the query of the user, then two cases arise from this:

 sizeOf(reqWord)==0

 sizeOf(reqWord)!=0

In the case where sizeOf(reqWord)==0, there exists non-
entity-reference words in the user’s query, this would lead to
the production of an SQL query that selects only the data
requested by the user from the csc table, else, a general
collection of data is selected from csc table for the data item(s)
in the set of specific words S.

In fact, for any of the remaining cases:

 sizeOf(G)!=0 and sizeOf(S)==0

 sizeOf(G)!=0 and sizeOf(S)!=0

it is tested whether sizeOf(reqWord)==0 or
sizeOf(reqWord)!=0, and the codes of the knowledge base
found in the intermediate application program does the
necessary operations using techniques in both syntactic and
semantic parsing to transform the user’s query into a
corresponding SQL query.

VII. IMPLEMENTATION AND RESULTS

The proposed system is implemented as a web-based
application. Thus the languages used include HTML, CSS,
JAVASCRIPT, PHP,SQL, while the database used is MySQL
as stated earlier. The system answers most of the questions
posed to it by the user in natural language. The system enables
a user to get information about subject of interest by typing the
text in its natural language form. Below is a snapshot of some
search carried out to test the performance of the result. a
student or lecturer by just typing the latter’s phone number or
any identifying data for that matter. The snapshots below
show some correct inputs and their associated results for the
testing on correct inputs.

Query 1

Result 1

Query 2

Result 2

Query 3

Result 3

Query4

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 3, No. 10, 2012

174 | P a g e

www.ijacsa.thesai.org

Result 4

The following snapshots below show how cases of
grammatically incorrect queries are handled. These errors
might arise from the fact that the user has poor grammatical
abilities when it comes to the use of English Language [10], or
the user forgets that a particular word had been typed once
earlier, and then proceeds to type it again.

Query 5

Result 5

In a case where a user just enters an arbitrarily random
query, that makes no sense whatsoever in the English
Language, the NLIDB should not crash, rather, it should
neatly handle this error and show an appropriate message
flagging off that error.

The snapshot below shows the result of this idea.

Query 6

Result 6

VIII. DISCUSSIONS

The flexibility of the Natural Language Interface for
Relational Databases is of great importance since it is almost
unavoidable for users to make either typographical errors or
input out-rightly wrong queries altogether.

A flexible NLIDB should be able to get along somehow
with these errors as neatly as possible. This means that there
shouldn’t be any query whatsoever that could crash the
NLIDB.

Flexibility of an NLIDB also makes the computer appear
intelligent. This is the main goal of the field of Artificial
Intelligence, as a branch of Artificial Intelligence, Natural
Language Processing (NLP), and attempts to make human-
computer interaction as easy as possible [4]. From the
experimental results presented above, it is clear that the
developed NLIDB is indeed flexible as intended.

It is this flexibility that this project seeks to accomplish
and experimentation with random queries have yielded a very
high efficient performance rate. The developed NLIDB has its
own limitations. These limitations include the following:

 Domain Dependence: The NLIDB is meant to be

implemented on a particular Relational Database

domain, if it is to be moved to another RDBMS

domain, it will have to be reconfigured for that

domain. This is one limitation.

 Selective Query Domain: The NLIDB does not

answer ALL the questions users may have about

different countries of the world. For example,

questions on civil issues of different countries will

not be answered, as they are beyond the scope of the

NLIDB, albeit, such questions can be answered if

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 3, No. 10, 2012

175 | P a g e

www.ijacsa.thesai.org

words describing such civil issues are included in the

corpus.

Despite these limitations, the developed NLIDB have
proven to have a high performance rate when it comes to the
queries posed to it from its query domain.

The limitations of the developed NLIDB, as stated earlier
are as follows:

 Domain Dependent (the goal of most researchers is to

design a domain independent NLIDB)[11].

 Limited on Query Domain

However, despite these limitations, the developed NLIDB
have proven to have a high performance rate when it comes to
the queries posed to it from its query domain, as demonstrated
in the previous section on implementation and testing, by
experimentations with random selection of queries.

IX. CONCLUSION

Natural language has been successfully to perform a full
knowledge based semantically conscious search on relational
database. This is the intent of this work. The paper showed
how a modelled algorithm can be used to create a user friend
non expert search process. The modularity of sql conversion
was also shown.

Proposal was implemented on a departmental database
however the interest in this work is not the size of the corpus
but the time of execution of any unit query. Our proposed
model has been able to intelligently process users request in a
reasonable human useable format. The implemented result
shows that the time is considerable better than earlier
propositions and shall thus be upheld.

The research in this area is still ongoing and many
interesting additions will be made in the future especially in

the area of uncertainty in user information request definition.

REFERENCES

[1] P. Reis, N. Mamede, and J. Matias, "Edite - A Natural Language
Interface to Databases: a New Dimension for an Old
Approach", Proceeding of the Fourth International Conference on
Information and Communication Technology in Tourism, Edinburgh,
Scotland, 1997.

[2] M. Minock, "A phrasal approach to natural language access over
relational databases", proceedings of the 10th International Conference
on Applications of Natural Language to Information Systems, Alicante,
Spain, 2005, pp. 333-336

[3] Adam: Student Debt Advisor, Convagent Ltd, Manchester, UK, 2001,
Available at: http://www.convagent.com/convagent/adam3.aspx

[4] W. Woods, R. Kaplan, and B. Webber, "The Lunar Sciences Natural
Language Information System", Final Report, Technical Report 2378,
Bolt Beranek and Newman Inc., 1972

[5] R.J.H., Scha., “Philips Question Answering System PHILIQA1”, In
SIGART Newsletter, no.61. ACM, New York, (February 1977)

[6] W. Wahlster, H. Marburger, A. Jameson, and S. Busemann. Over-
answering Yes-No Questions: Extended Responses in a NL Interface to
a Vision System. In: Proc. of the 8th IJCAI, pp. 643–646, Karlsruhe,
FRG, 1983

[7] B.J. Grosz, “TEAM: A Transportable Natural-Language Interface
System”, In Proceedings of the 1st Conference on Applied Natural
Language Processing, Santa Monica, California, (1983), pp 39–45

[8] A.M. Popescu, O. E. , and H. Kautz,” Towards a Theory of Natural
Language Interfaces to Databases “ University of Washington Computer
Science Seattle, WA 98195, USA.

[9] A. Enikuomehin, J.Sadiku, A new Architecture for NLIDB Using Local
Appropriator Engine for SQL Generation, International journal of
Advance research in computer science, 2012.

[10] N Nihalani et al ,“ An Intelligent Interface for Relational Databases”,
IJSSST, Vol. 11, No. 1, ISSN: 1473-804x online, 1473-8031 print, p30.

[11] R. Ahmad “Efficient Transformation of a Natural Language Query to
SQL for Urdu”, Proceedings of the Conference on Language &
Technology 2009, p53.

