
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 3, No. 10, 2012

11 | P a g e

www.ijacsa.thesai.org

A Semantics for Concurrent Logic Programming

Languages Based on Multiple- Valued Logic

Marion Glazerman Ben-Jacob

Department of Mathematics and Computer Information

Science Mercy College
Dobbs Ferry, New York, USA

Abstract— In order to obtain an understanding of parallel logic

thought it is necessary to establish a fully abstract model of the

denotational semantics of logic programming languages. In this

paper, a fixed point semantics for the committed choice, non-

deterministic family of parallel programming languages, i.e. the

concurrent logic programming languages is developed. The

approach is from an order theoretic viewpoint. We rigorously

define a semantics for a Guarded Horn Clauses-type of language

because of the minimal restrictions of the language. The

extension to other concurrent logic programming languages

would be direct and analogous, based on their specific rules of

suspension. Today’s world is replete with multitasking and

parallelism in general. The content of this paper reflects a

paradigm of an application of multi-valued logic which is

reflective of this.

Keywords- concurrent logic programming; multiple-valued logic;

denotational semantics.

I. INTRODUCTION

Parallelism in technology encourages us to examine the
meaning of different logical operations being done
concurrently. A question of reasonable complexity is how
would one attempt to solve more than one quantitative
problem at the same time or attempt to make more than one
logical inference concurrently. We need to give meaning to the
programs that are written in languages that possess the
capability of concurrency.

In the case of implementing a logic program via resolution,
it appears that not only will parallelism increase efficiency but
that the underlying inference procedure actually lends itself in
a natural way toward concurrency; for any selected clause,
many different instantiations of a selected atom might be
attempted at once, more than one atom might be chosen for
possible resolution, and any give atom might even select
several different clauses that contain an atom against with
which it might be resolved. With all these non-deterministic
possibilities, obviously, concurrency controls must also be
guaranteed by parallel programming languages.

Given that sound results can be obtained, we need to
specifically understand how logical inferences are made by
machines that support parallelism. A fundamental goal
becomes the understanding of parallel logic.

First order logic does not provide us with a significantly
sophisticated basis for interpreting parallel logic thought.
Perhaps, Kleene’s [19] three-valued logic or Belnap’s [2] four-

valued logic is more appropriate. Upon closer inspection the
situation is more involved than just several processors working
independently. A reasonable model of what happens when
pertinent information is spread over a number of sites that
communicate with each other was investigated by Fitting [10,
11]. It was based on Belnap’s four-valued logic, exhibited by
a bi-lattice structure.

Existing results credit a greater complexity to parallel logic
thinking than information just being distributed over a number
of sites. Parallelism, accounting for hardware and supporting
language, allows for shared memory, sometimes somewhat
restricted, sometime global, and interaction among the
processors prior to the final assignment of truth values; thus, a
fixed point semantics based on a simple bi-lattice structure no
longer seems adequate.

In order to obtain an understanding of parallel logic
thought and the role played by classical logic, we need to
establish a fully abstract model of the denotational semantics
of logic programming languages [22]. In addition to its other
merits, this type of model can serve as a theoretical foundation
for debugging parallel logic programs.

In pursuit of the understanding of parallel logic
programming, an analysis of the operational semantics of
Concurrent Prolog and the Concurrent Constraint
Programming (CCP) family of languages has been made by
Saraswat [24]. Kok [20] has developed a purely topological
model for the denotational semantics of Concurrent Prolog,
and Gerth, Codish, Lichtenstein and Shapiro [14] have
developed one for Concurrent Prolog based on sets of
suspensions. We will examine the semantics of a parallel logic
programming language from an order theoretic viewpoint.

In this paper fixed point semantics for the committed
choice, non-deterministic and parallel (CCNAP) family of
parallel programming languages, i.e. the concurrent logic
programming languages, is developed. We start with GHC,
Guarded Horn Clauses, and the simplest of the parallel logic
programming languages.

GHC, with its minimal restrictions, few rules of suspension
and global environments is an appropriate starting place for
understanding how logical implications are formed in parallel.
We assume the version of GHC which we are considering
allows for failure; thus, it might perhaps be more accurate to
say we are considering a GHC-type language. We rigorously
define semantics for a parallel programming language. We

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 3, No. 10, 2012

12 | P a g e

www.ijacsa.thesai.org

build this definition with the operational semantics of GHC in
mind and so, this semantics will describe a formalized GHC.
The extension to the other concurrent logic programming
languages would be natural and based on the language-
dependent suspension rules.

II. SYNTAX

The syntax of GHC and more generally, that of any
member of the family of CCNAP languages is based on the
syntax of the sequential logic programming languages. Let L
be a first-order language over a non-empty domain D. A term
is either a variable, or a constant or a function of terms, i.e. an
element belonging to the domain D. If P() is an n-place
predicate symbol and ti , 1< i < n are terms of L(D) then P(
t1,…,tn) is an atom or atomic formula. A literal of L(D) is an
atom or the negation of an atom belonging to L(D).

An expression of the form H: -G1…Gk│B1…Bn (k, n>0) is
a guarded program clause. H is called the clause head, the Gj’s
are guard goals and the Bi’s are body goals. H, the Gj’s and the
Bi’s are all atomic formulae. The commitment operator, │, is
usually interpreted as conjunction and separates the clause’s
guard from its body, the former being written to the left of the
operator and including the head, and the latter the right. The
guard of a non-goal clause is never empty. The limiting case
for GHC is when the predicate is the system predicate true, i.e.
the clause if of the form h(x): - true│ b(x). Goal clauses are of
the form : - B1…Bn . A CCNAP program is a finite set of
guarded program clauses.

III. SEMANTICS

Before giving formal definitions, we will attempt to
provide the motivation for our choice of a five-valued logic
and for the actual truth values chosen.

We want our denotational semantics to align with the
operational semantics of the CCNAP family of languages as
closely as possible, and so, we concluded that we need a four-
valued logic, the truth values being true (t), false (f), undefined
(┴), and suspend (s). The fifth value, overdefined (┬), is
included for topological facility.

The necessity of the first two truth values in our logic is
obvious. Suspend is required because of the nature of the
parallel programming languages. All the concurrent logic
languages experience suspension of processing as a result of
specific language dependent occurrences. According to Ueda
[27], GHC’s rules of suspension are:

“(a) Unification invoked directly or indirectly in the guard
of a clause C called by a goal G cannot instantiate the goal G.

(b) Unification invoked directly or indirectly in the body of
a clause C cannot instantiate the guard of C until that clause is
selected for commitment.

A piece of unification that can succeed only by making
such bindings is suspended until it can succeed without
making such bindings.”

The truth value suspend reflects the fact that work has been
attempted to establish the truth value of the instantiated
predicate in question, no (exact) precise truth valued has yet

been assigned and at this point in time work must be stopped
and recorded (suspended) so as not to interfere with the
validity of the calculations of the other processors. Also,
should there be a malfunction in the hardware allowing for one
instantiated predicate to be assigned true by one processor and
false by another, we will say the predicate has the truth value
suspend, indicating that some work has been done on it. We
are assuming all processor are working with all clauses.

After careful consideration, it will become clear that ┴
belongs in the scheme. We will be determining truth value
assignments based on the operations of several processors and
our intuition leads to the naturalness of assigning ┴ to an
instantiated predicate in the following cases: if a processor has
not even begun dealing with its values yet; if more “work” is
needed before assigning it a truth value and this work can
proceed without interfering or contradicting the operation of
the other processors.

More formally, along the lines of Fitting and Ben-Jacob
[12, 13] we get

Definition 1

FIVE is the space of truth values {┬, t, f, suspend, ┴} with
the ordering <5 where ┴ <5 suspend <5 f <5 ┬ and ┴ <5
suspend <5 t <5 ┬ . Figure 1 illustrates the ordering
pictorially.

 ┬

 / \

 / \

 f t

 \ /

 \ /

 suspend

 │

 ┴

Figure 1

Clearly, the ordering <5 is based on the amount of
information or knowledge available. We note the existence of
an alternative ordering <5

*
 where f <5

*
 suspend <5

*
 t,

f <5
*
 ┬ <5

*
 t and f <5

*
 ┴ <5

*
 t. The ordering <5

*
is based

on the amount of truth available.

Definition 2

 A five-valued interpretation is a mapping V from ground
(variable-free) atomic formulae of L to FIVE. Obviously, in
general, an interpretation can be trivially single-valued or
many-valued, not necessarily five-valued. For our purposes,
we need only consider four-valued interpretations.

Our interpretations are given the point wise ordering based
on ground atomic formulae. The space FIVE is a complete
lattice and by a generalization of the Knaster-Tarski Theorem,
must have a least fixed point and a greatest fixed point [17].

The extension of interpretations from atomic formulae, e.g.
A and B, to all closed formulae is governed by the truth tables,
Table I and Table II.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 3, No. 10, 2012

13 | P a g e

www.ijacsa.thesai.org

TABLE I

A B A v B A∩B

true false t f

 true t t

 suspend t suspend

 ┴ t ┴

false false f f

 suspend suspend f

 ┴ ┴ f

suspend suspend suspend suspend

 ┴ ┴ ┴

┴ ┴ ┴ ┴

TABLE II

A ~A

true false

false true

suspend suspend

┴ ┴

With regard to Table I we note that both AvB and A∩B

are monotonic with regard to the knowledge ordering <5 of
FIVE. Other patterns that exist include that A∩B takes the
g.l.b. of its values with regard to the truth ordering <5

*
.

A∩B takes the g.l.b. of its values with regard to the knowledge
ordering if we disregard the argument being equal to false and
lastly, in the knowledge ordering, if one of the arguments is
false. A∩B always takes on the l.u.b. of the two values. Also,
AvB takes on the l.u.b. of its values with regard to the truth
ordering.

Given a clause of the generic type h ← g│b , by definition
the guard includes those predicates to the left of the commit
operator, including the head. By headless guard we mean only
those predicates to the left of the commit operator on the right
side of the implication arrow, i.e. the guard without the head
of the clause. Consider the following truth table:

TABLE III

headless guard (g) body b g│b

t t suspend

f

t suspend

f

suspend t suspend

f

suspend

suspend

f t suspend

f

f

f

┴ t ┴ ┴

f f

┴ suspend suspend

We clarify (truth) Table III by noting if the guard g is false
and the body b of a clause suspends, g│b is false since it
cannot be used in a proof that ascertains the truth value of a
predicate. Also, according to Ueda [27], GHC was designed
that with the two given rules of suspension (see page 7),
anything can be done in parallel or even executed in a
predetermined order provided the latter constraint does not
change the meaning of the program; thus, we must allow the
possibility of the truth values that appear in the last line of
Table III. It is conceivable in theory that the body of a clause
could get instantiated prior to the instantiation of the guard and
the commitment and that this is the clause to be used in an
attempted resolution process. If this takes place, the truth
value of the body would be suspend. In this case, if a body, b,
suspends its corresponding guard will never be instantiated;
thus, the guard of this clause is undefined. Reiterating, if the
situation is such that the instantiation of a predicate in the
body forces the instantiation of a variable in the guard prior to
commitment the truth value of the body would be suspend and
so, the guard would never get assigned a truth value. We note
that g│b is monotonic. We now define a conditional truth
table for the natural interpretation of h ← g│b where g│b is of
the form g1,…,gk│b1,….,bn (k,n>0).

Table IV

g│b h h← g│b Annotations

t t t

f t t

suspend t t

┴ t t

t f f

f f t

suspend f suspend Suspended work on g│b caused
lack of knowledge of outcome;

so, h← g│b has value suspend.

┴ f ┴ Insufficient amount of

information caused lack of
knowledge of outcome, so h←

g│b has value

t suspend suspend

f suspend suspend h← g│b takes on suspend to
reflect some work was done but

not enough to determine a final

truth value.

suspend suspend suspend Work has been done on g│b and

h, but no value can be

determined.

┴ suspend suspend Reflects that work has been
done but no conclusion has been

reached.

t ┴ ┴ It is the truth value of h that is
responsible for the lack of a

determined truth value of the

entire clause.

f ┴ ┴

┴ ┴ ┴

After examining Table IV, we note the monotonicity with

regard to knowledge of h←g│b. We also remark on the
deviation from classical logic, e.g. a→b ≠ a v b as f → ┴ is ┴
and ┐f v ┴ = t v ┴ is true.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 3, No. 10, 2012

14 | P a g e

www.ijacsa.thesai.org

Obviously, if the formula is of the form ╡x A (there exists
an x such that A is true), its truth value is determined by the
truth tables and the relationship ╡x A = vxεD A. Similarly, if
the formula is of the form for- every-x A is true, its truth value
depends on the tables and the relationship for- every-x A is
true =∩xεD A.

Next we will consider the assignment of truth values for
heads of clauses in a logic program, first with regard to an
individual processor and then, with respect to several
processors working concurrently.

When we write h←g│b we will be using this shorthand
notation to mean h(x)←g(x)│b(x). If we want to resolve
clauses of the form h1(x)←g1(x)│b1(x) and h2(y)←g2(y)│h1(y)
we would of course first have to unify the clauses. Using our
shorthand notation, we would represent these two clauses by
h1←g1│b1 and h2←g2│h1

/
.

Let p1←g1│b1 be the clause whose head predicate p1 is
attempting to unify with the goal clause via a unifier θ0. Let
p2← g2│b2 be the clause whose head predicate p2 is attempting
to unify with g1 via a unifier θ1 to solve g1. In general, let θn be
the unifier needed to unify guard gn with head predicate pn+1 to
solve the guard gn. The process is nested j+1 levels until the
guard of the j+1

st
 clause is “true.”

Definition 3

We will say p and pi are unifiable if the composition of
unifiers θj∙….. θ1∙ θ0 does not cause a suspension. The most
general unifier will be the composition of most general unifers
that do not cause a suspension. Unifiers that do not cause a
suspension under composition will be said to be compatible.

Theorem 1

The rigorously defined parallel programming languages
that has been defined on the previous pages correctly reflects
the operational semantics of GHC.

Proof: Previous discussion, truth tables I-IV, and
definitions 2-3.

Definition 4

Let P be a logic program defined over a domain D. A
reserved relation symbol is a symbol that represents a given
relation on the domain D, i.e. a given mapping from D to the
appropriate or relevant space of truth values. Φip will be the
map on non-parallel interpretations by a given processor i,
given by the following: Assume Φip(V) = W. W is the
interpretation such that

(i) if R is a reserved relation symbol, W(R(a)) =

R(a).
For a non-reserved relation symbol h,

(ii) if ╡a program clause in P(D) whose head is h(a)

and whose guarded body g(a)│ b(a) maps to

true under V. then W(h(a)) = true.

(iii) if all clauses in P(D) of which h(a) is the head,

have guarded bodies that V maps to false, then

W(h(a)) = false.

(iv) If at least one clause in P(D) whose head is ha(a)

and whose corresponding guarded body V maps

to suspend while all other clauses of the form

h(a)← gi(a)│bi(a) in P(D) have guarded bodies

that V maps to false,

 W(h(a)) = suspend.

(v) if all clauses in P(D) whose head is h(a) have

bodies that V maps to suspend, then W(h(a)) =

suspend.

(vi) in all other cases W(h(a)) = ┴, i.e. the guarded

bodies of the clauses in P(D) of which h(a) is the

head are such that for at least one, V maps the

guarded body to ┴ and none are mapped to true

by V, the W(h(a)) = ┴.
To gain more comfortable with the previous definition, let

us examine its effect on ground programs.

1. Since there does not exist any instantiation of

variables, suspension does not play any role as a truth

value.

2. Once the headless guard of a clause is true, the

interpretation of the clause is equivalent to its

“unguarded version.” Consider the program

 q←

 p ←q│r
In this case, V(r) = ┴, and if Φ(V) = W, then W(p) = ┴.

This program behaves like p←r. Consider the comparison of
the following two programs, assuming negation in the body of
a clause is allowed.

r← r←

q← q←

p←q│r p←q│ ┐r

In the first program, W(p) = t and in the second program,

W(p) = false.

1. If a headless guard is false, V(guarded body) = false;

it is irrelevant which truth value V(body) takes on;

thus, W(unguarded head) = false.

2. If V(guard) = ┴, then the truth value of the body is of

concern. Consider the following three programs:

h←g│b b← b←

 h←g│b h←g│┐b

For the first program V(g│b) = ┴ and W(h) = ┴. For the
second and third programs, W(h) = ┴ and W(h) = f,
respectively.

The aforementioned conclusions are based on (Truth)
Table III. The definition of Φp is satisfactory when one
processor is trying to interpret the true meaning of a program
clause or several processors are concurrently determining the
interpretation of one program clause. With parallel logic
programming we must account for more than one

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 3, No. 10, 2012

15 | P a g e

www.ijacsa.thesai.org

interpretation of a clause or a predicate being worked on
concurrently, as well.

Definition 5

Let pi(a) denote the i
th

 interpretation of the instantiated
predicate p(a). Then the concept of parallel interpretations is
defined in a binary manner and pi(a) @ pj(a), the interpretation
based on two, concurrent interpretations is given by Table V.

Table V

pi(a) pj(a) pi(a) @
pj(a)

Annotations

t

t

t

t

suspend t

One processor is forced to
suspend but the other

processor proved the predicate

true.

t f ┬ Overdefined- possibly by

hardware malfunction; this is

the only occurrence of ┬.

t ┴ t One processor proved the
predicate true; the other one

may not even have examined

pj(a).

f suspend f The assumption is that one

processor chose the wrong

clauses to try to unify and so
suspend; the other processor

proved the other predicate

false based on the program.

f f f

f ┴ f (Same as other case). One

processor did not deal with the

truth value of pj(a) and the
other got false as a value.

suspend suspend suspend

suspend ┴ suspend Some work was done; cannot

do more work on one
processor and other processor

did not work with the

predicate.

The commutative and associative closure of @ are
obvious. As we previously mentioned the set FIVE with its
ordering is a complete lattice (See Figure 1). An interpretation
is a map from atomic formulae into the above set.
Interpretations with regard to an individual processor are given
the point-wise ordering, and any order-preserving map has a
least fixed point (lfp) and a greatest fixed point (gfp).

Definition 6

Let Φ denote a parallel-system operator on interpretations
based on the maps on the interpretations from the n individual
processors with @ defined between operators pointwise.

Lemma 1

Φ is independent of the order of the maps on the individual
interpretations upon which Φ is based.

Proof: Referring to Table IV we see the values in the range
of the @ operation depends merely on the truth values taken
on by the operands under consideration and are order
independent.

Interpretations on the system are given a pointwise
ordering (i.e. V1 < V2 iff

V1 (a) < V2 (a) with respect to the lattice FIVE for all atoms
a) and so, any order-preserving map on parallel interpretations
will have a least fixed point. The truth values determined by
the lfp of Φp, , an operator on a five-valued parallel
interpretation supplies us with the truth valued determined by
the program.

In general, a parallel interpretation is an interpretation that
is achieved by parallel evaluation of sequential interpretations.
Every sequential interpretation can be considered as (the
limiting case of) a parallel interpretation. We now proceed to
show the relationship between the parallel interpretations
determined by elements in the range of Φp and the sequential
interpretations determined by the elements in the range of Φip,
i=1,…n.

Definition 7

For processor i, we define the following family of maps on
interpretations with regard to program P. Φip is as defined in
Definition 4.

(1) Φip
0
 assigns corresponding truth values to reserved

relation symbols and given relations; on unreserved

relations symbols it is ┴.

(2) Φip
α+1

≡ Φip (Φip
α
)

(3) For a limit ordinal λ, Φip
λ
 ≡ sup { Φip

α
│α < λ}

Definition 8

Let Φip be as in Definition 4. Let X be an interpretation of
a program P upon which Φip is defined. The following are
parallel-system interpretations:

Φp
0
(X) =X

Φp
1
(X) = Φ 1p

1
(X)@ Φ 2p

1
(X)….@ Φ np

1
(X)

Φ p
α+1

(X) = Φ p(Φp
α
(X))

Φ p
λ
(X) = lub {Φp

β
(X)│β < λ}

The following shows Φ p

α
(X) is well defined.

Lemma 2

Let μ be any function mapping {1,2,…n} to {0,1} such
that lub μ(i) = 1.

Then Φ p
1
(X) = @i Φ i

μ(i)
(X).

Proof: Φ p
1
(X) is a parallel-system interpretation based on

the lub of interpretations implied by sequential interpretations.

Lemma 3:

Φ p
α
(X) = @i Φ i

μ(i)
(X) where μ is any mapping from

{1,2…n} to {0,1,2…α} such that lubi (i) = α, α any ordinal.

Proof: From lemma 1 we see that Φ p
α
(X) is a unique

interpretation for α a successor ordinal; thus, Φ p
λ
(X) is well

defined for λ a limit ordinal.

Lemma 4:

Let Φp = @Φip be the map from 5-valued parallel
interpretations into 5-valued parallel interpretations as defined
by Definition 8. Then

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 3, No. 10, 2012

16 | P a g e

www.ijacsa.thesai.org

(1) Φp (@ Φip
λi
(X)) i = 1

n
 = (2) (@ Φip

λi +1
(X)) i = 1

n
 = (3)

@[Φp

(Φip

λi
(X))] i = 1

n

Proof: (1) ↔ (2)

(2) is the n-parallel interpretation Φ p
α
(X) where α = lubi (λi

+1). (1) is the interpretation one gets from Φ operating on Φ
λ

(X), λ = lubi λi which by definition = Φ
λ+1

(X) where

λ = lubi λi and so is equal to (2).

(2) ↔ (3)

(3) is the resulting interpretation from Φ p acting on each
sequential interpretation Φip

λi
(X) as the limiting case of a

parallel interpretation, i.e. Φip
λi
(X) = Φip

λi
(X) @ Φjp

0
(X) (for

all j≠i). When we perform the @ operation we arrive at the
parallel interpretation Φp

α
(X) where α = lubi (λi +1).

IV. CONCLUSION

We contend that the approach of defining the semantics of
parallel logic programs that we have presented here has a
strong relationship with the theory of powerdomains based on
the topology established by Plotkin [24]. Additional future
work includes an extension of the results of this paper to other
concurrent logic programming language and their respective
semantics [15].

REFERENCES

[1] Apt, K.R., Bezem, M., Acrylic Programs, New Generation Computing,
9, pp. 335-363, (1995).

[2] Belnap Jr., N.D., A Useful Four-Valued Logic, Modern Uses of Multiple
Valued Logic, (edited by Dunn and Epstein) Reidel, Dordrecht, pp. 8-37,
(1977).

[3] Chen, W., Warren, D.S., A Goal-Oriented Approach to Computing the
Well-Founded Semantics, Journal of Logic Programming, 17, pp. 279-
300, (1993).

[4] Chen, W., Warren, D.S., Toward Effective Evaluation of General Logic
Programs, Technical Report 93-CSE-11, Southern Methodist University,
(1993).

[5] Della Croce, F., Tsoukiàs A., Moraïtis P., "Why is Difficult to Make
Decisions under Multiple Criteria, Proceedings of the Sixth
International Conference on AI Planning & Scheduling (AIPS'02)
Workshop on Planning and Scheduling with Multiple Criteria, pp. 41-
45, Toulouse, France, (2002).

[6] Derensart, P. Maluszynski, J. A Grammatical View of Logic
Programming, MIT Press, (1993).

[7] Dung, P. an Argumentation Semantics for Logic Programming with
Explicit Negation, Proceeding 10th International conference on Logic
Programming, pp. 615-30, (1993).

[8] Fitting, M.C., The Family of Stable Models, Journal of Logic
Programming, 17, pp. 197-225, (1993).

[9] Fitting, M.C., A Kripke-Kleene Semantics for Logic Programs, Journal
of Logic Programming, vol.3 pp. 295-312, (1986).

[10] Fitting, M.C., Logic Programming on a Topological Bilattice,
Fundamentica Informatica, vol. 11, pp.209-218, (1988).

[11] Fitting, M.C., Bilattices and the Semantics of Logic Programming,
Journal of Logic Programming, vol.11, pp. 91-116, (1991).

[12] Fitting, M.C.,, Ben-Jacob, M., Stratified and Three-Valued Logic
Programming Semantics, Logic Programming, Proceedings of the Fifth
International Conference and Symposium, editors, Kowalski, R.A., and
Bowen, K. S. pp.1054-1069, The MIT Press, (1988).

[13] [13] Fitting, M.C., Ben-Jacob, M., Stratified, Weak Stratified, and
Three-valued Semantics, Fundamenta Informatica, vol.13, pp. 19-33,
(1990).

[14] Gerth, R., Codish, M., Lichtenstein, Y., Shapiro, E., Fully Abstract
Denotational Semantics for Flat Concurrent Prolog, Weizmann Institute
Technical Report CS-8803, (1988).

[15] Hewitt, Carl, The repeated demise of logic programming and why it will
be reincarnated; What Went Wrong and Why: Lessons from AI
Research and Applications. Technical Report SS-06-08. AAAI Press.
(March 2006).

[16] Huth, M., Jagadeesan, R., and Schmidt, D.A. Modal Transition Systems:
a Foundation for Three-valued Program Analysis. Proceedings of the
European Symposium on Programming, Springer LNCS 2028, pp. 155-
169, (2001).

[17] Kakas, A., Mancarella, A., Dung, P., The Acceptability Semantics for
Logic Programs, Proceedings of the 11th International Conference on
Logic Programming, pp.504-519, (1994).

[18] Knaster, B. Une Theoreme sur les Fonctions d’Ensembles, Ann. Soc.
Polon. Math. Vol. 6, pp. 133-134 (1928).

[19] Kleene, S.C., Introduction to Metamathematics, Van Nostrand,
Princeton, (1952).

[20] Kok, J.N., A compositional Semantics for Concurrent Prolog,
Symposium on Theoretical Aspects of Computer Science, pp. 373-388,
(1988).

[21] Malfon, B., Characterization of Some Semantics for Logic Programs
with Negation and Application to Program Validation, Rapport de
Recherche Laboratoire d’ Informatique Fondamentale d’Orleans, pp. 94-
100, (1994).

[22] Milner, Robin, The Space and Motion of Communicating Agents.
Cambridge University Press, (2009).

[23] Ross, K.A., A Procedural Semantics for Well-Founded Negation in
Logic Programs, Journal of Logic Programming, 13, pp. 1-22, (1992).

[24] Saraswat, V.A., Concurrent Constrain Programming Languages, Ph.D.
thesis, Carnegie-Mellon University, (January 1989).

[25] [25] Schmidt, David, Denotational Semantics, Wm. Brown, Iowa,
(1988).

[26] Tarski, A., A Lattice-Theoretical Fixpoint Theorem and its Applications,
Pacific Journal of Mathematics, vol.5, pp. 285-309, (1955).

[27] Ueda, K. Guarded Horn Clauses, ICOT Technical Report TR-103, June
1985.

[28] Ueda, K. and Kato, N., The Language Model LMNtal. Proceedings of
the 19th International Conference on Logic Programming (ICLP'03),
LNCS 2916, Springer-Verlag, pp.517-518, 2003.

[29] Ueda, K. A Pure Meta-Interpreter for Flat GHC, A Concurrent
Constraint Language, Computational Logic: Logic Programming and
Beyond (Essays in Honour of Robert A. Kowalski, Part I), A.C. Kakas,
F. Sadri (Eds.), Lecture Notes in Artificial Intelligence 2407, Springer-
Verlag, pp.138-161, (2002).

[30] Van Gelder, A. Ross, K.A., Schlipf, J.S., The Well Founded Semantics
for General Logic Programs, Journal of the ACM, vol. 38, 3, pp. 620-
650, (1991).

AUTHORS PROFILE

Dr. Marion Ben-Jacob is a Professor in the Department of Mathematics and

Computer Information Science at Mercy College for over 30 years. She
teaches computer science, mathematics, and critical inquiry, both in the

traditional classroom and online. She has recently written papers and spoken

extensively on the topics of computer science, computer ethics, online
teaching/distance education, collaborative learning, and global learning at

numerous conferences. Dr. Ben-Jacob serves on the editorial board of the

Journal of Educational Technology Systems. She is the editor and a
contributing author of Integrating Computer Ethics across the Curriculum and

a recently published e-book, Computer Ethics: Integrating across the

Curriculum.

http://www.cis.ksu.edu/~schmidt/papers/esop01.ps.gz
http://www.cis.ksu.edu/~schmidt/papers/esop01.ps.gz

