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Abstract— In order to obtain an understanding of parallel logic 

thought it is necessary to establish a fully abstract model of the 

denotational semantics of logic programming languages. In this 

paper, a fixed point semantics for the committed choice, non-

deterministic family of parallel programming languages, i.e. the 

concurrent logic programming languages is developed. The 

approach is from an order theoretic viewpoint. We rigorously 

define a semantics for a Guarded Horn Clauses-type of language 

because of the minimal restrictions of the language. The 

extension to other concurrent logic programming languages 

would be direct and analogous, based on their specific rules of 

suspension. Today’s world is replete with multitasking and 

parallelism in general. The content of this paper reflects a 

paradigm of an application of multi-valued logic which is 

reflective of this. 
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I. INTRODUCTION 

Parallelism in technology encourages us to examine the 
meaning of different logical operations being done 
concurrently. A question of reasonable complexity is how 
would one attempt to solve more than one quantitative 
problem at the same time or attempt to make more than one 
logical inference concurrently. We need to give meaning to the 
programs that are written in languages that possess the 
capability of concurrency. 

In the case of implementing a logic program via resolution, 
it appears that not only will parallelism increase efficiency but 
that the underlying inference procedure actually lends itself in 
a natural way toward concurrency; for any selected clause, 
many different instantiations of a selected atom might be 
attempted at once, more than one atom might be chosen for 
possible resolution, and any give atom might even select 
several different clauses that contain an atom against with 
which it might be resolved. With all these non-deterministic 
possibilities, obviously, concurrency controls must also be 
guaranteed by parallel programming languages. 

Given that sound results can be obtained, we need to 
specifically understand how logical inferences are made by 
machines that support parallelism. A fundamental goal 
becomes the understanding of parallel logic.  

First order logic does not provide us with a significantly 
sophisticated basis for interpreting parallel logic thought. 
Perhaps, Kleene’s [19] three-valued logic or Belnap’s [2] four-

valued logic is more appropriate. Upon closer inspection the 
situation is more involved than just several processors working 
independently. A reasonable model of what happens when 
pertinent information is spread over a number of sites that 
communicate with each other was investigated by Fitting [10, 
11].  It was based on Belnap’s four-valued logic, exhibited by 
a bi-lattice structure. 

Existing results credit a greater complexity to parallel logic 
thinking than information just being distributed over a number 
of sites. Parallelism, accounting for hardware and supporting 
language, allows for shared memory, sometimes somewhat 
restricted, sometime global, and interaction among the 
processors prior to the final assignment of truth values; thus, a 
fixed point semantics based on a simple bi-lattice structure no 
longer seems adequate. 

In order to obtain an understanding of parallel logic 
thought and the role played by classical logic, we need to 
establish a fully abstract model of the denotational semantics 
of logic programming languages [22]. In addition to its other 
merits, this type of model can serve as a theoretical foundation 
for debugging parallel logic programs. 

In pursuit of the understanding of parallel logic 
programming, an analysis of the operational semantics of 
Concurrent Prolog and the Concurrent Constraint 
Programming (CCP) family of languages has been made by 
Saraswat [24].  Kok [20] has developed a purely topological 
model for the denotational semantics of Concurrent Prolog, 
and Gerth, Codish, Lichtenstein and Shapiro [14] have 
developed one for Concurrent Prolog based on sets of 
suspensions. We will examine the semantics of a parallel logic 
programming language from an order theoretic viewpoint. 

In this paper fixed point semantics for the committed 
choice, non-deterministic and parallel (CCNAP) family of 
parallel programming languages, i.e. the concurrent logic 
programming languages, is developed. We start with GHC, 
Guarded Horn Clauses, and the simplest of the parallel logic 
programming languages.  

GHC, with its minimal restrictions, few rules of suspension 
and global environments is an appropriate starting place for 
understanding how logical implications are formed in parallel. 
We assume the version of GHC which we are considering 
allows for failure; thus, it might perhaps be more accurate to 
say we are considering a GHC-type language. We rigorously 
define semantics for a parallel programming language. We 
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build this definition with the operational semantics of GHC in 
mind and so, this semantics will describe a formalized GHC.  
The extension to the other concurrent logic programming 
languages would be natural and based on the language-
dependent suspension rules. 

II. SYNTAX 

The syntax of GHC and more generally, that of any 
member of the family of CCNAP languages is based on the 
syntax of the sequential logic programming languages. Let L 
be a first-order language over a non-empty domain D. A term 
is either a variable, or a constant or a function of terms, i.e. an 
element belonging to the domain D. If P( ) is an n-place 
predicate symbol and ti , 1< i < n are terms of L(D) then P( 
t1,…,tn) is an atom or atomic formula. A literal of L(D) is an 
atom or the negation of an atom belonging  to L(D). 

An expression of the form H: -G1…Gk│B1…Bn (k, n>0) is 
a guarded program clause. H is called the clause head, the Gj’s 
are guard goals and the Bi’s are body goals. H, the Gj’s and the 
Bi’s are all atomic formulae. The commitment operator, │, is 
usually interpreted as conjunction and separates the clause’s 
guard from its body, the former being written to the left of the 
operator and including the head, and the latter the right.  The 
guard of a non-goal clause is never empty. The limiting case 
for GHC is when the predicate is the system predicate true, i.e. 
the clause if of the form h(x): - true│ b(x). Goal clauses are of 
the form   : - B1…Bn . A CCNAP program is a finite set of 
guarded program clauses. 

III. SEMANTICS 

Before giving formal definitions, we will attempt to 
provide the motivation for our choice of a five-valued logic 
and for the actual truth values chosen.  

We want our denotational semantics to align with the 
operational semantics of the CCNAP family of languages as 
closely as possible, and so, we concluded that we need a four-
valued logic, the truth values being true (t), false (f), undefined 
(┴), and suspend (s). The fifth value, overdefined (┬), is 
included for topological facility. 

The necessity of the first two truth values in our logic is 
obvious. Suspend is required because of the nature of the 
parallel programming languages. All the concurrent logic 
languages experience suspension of processing as a result of 
specific language dependent occurrences.  According to Ueda 
[27], GHC’s rules of suspension are: 

“(a) Unification invoked directly or indirectly in the guard 
of a clause C called by a  goal G cannot instantiate the goal G. 

(b) Unification invoked directly or indirectly in the body of 
a clause C cannot instantiate the guard of C until that clause is 
selected for commitment. 

A piece of unification that can succeed only by making 
such bindings is suspended until it can succeed without 
making such bindings.” 

The truth value suspend reflects the fact that work has been 
attempted to establish the truth value of the instantiated 
predicate in question, no (exact) precise truth valued has yet 

been assigned and at this point in time work must be stopped 
and recorded (suspended) so as not to interfere with the 
validity of the calculations of the other processors. Also, 
should there be a malfunction in the hardware allowing for one 
instantiated predicate to be assigned true by one processor and 
false by another, we will say the predicate has the truth value 
suspend, indicating that some work has been done on it. We 
are assuming all processor are working with all clauses. 

After careful consideration, it will become clear that ┴ 
belongs in the scheme. We will be determining truth value 
assignments based on the operations of several processors and 
our intuition leads to the naturalness of assigning ┴ to an 
instantiated predicate in the following cases: if a processor has 
not even begun dealing with its values yet; if more “work” is 
needed before assigning it a truth value and this work can 
proceed without interfering or contradicting the operation of 
the other processors. 

More formally, along the lines of Fitting and Ben-Jacob 
[12, 13] we get 

Definition 1 

FIVE is the space of truth values {┬, t, f, suspend, ┴} with 
the ordering <5 where ┴  <5  suspend <5  f  <5 ┬ and  ┴  <5  
suspend <5  t  <5 ┬   . Figure 1 illustrates the ordering 
pictorially. 

           ┬ 

                /          \ 

                           /              \ 

                                                   f                   t 

                                                     \                / 

                                                        \            / 

                                                         suspend 

 

         │ 

 

                                                              ┴ 

Figure 1 

Clearly, the ordering <5   is based on the amount of 
information or knowledge available. We note the existence of 
an alternative ordering <5 

*
 where  f <5 

*
 suspend <5 

*
 t, 

f <5 
*
 ┬ <5 

*
 t and f <5 

*
  ┴   <5 

*
 t.  The ordering <5 

* 
is based 

on the amount of truth available. 

Definition 2  

 A five-valued interpretation is a mapping V from ground 
(variable-free) atomic formulae of L to FIVE. Obviously, in 
general, an interpretation can be trivially single-valued or 
many-valued, not necessarily five-valued. For our purposes, 
we need only consider four-valued interpretations. 

Our interpretations are given the point wise ordering based 
on ground atomic formulae. The space FIVE is a complete 
lattice and by a generalization of the Knaster-Tarski Theorem, 
must have a least fixed point and a greatest fixed point [17]. 

The extension of interpretations from atomic formulae, e.g. 
A and B, to all closed formulae is governed by the truth tables, 
Table I and Table II. 
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TABLE I 

A B A v B A∩B 

true false t f 

 true t t 

 suspend t suspend 

 ┴ t ┴ 

false false f f 

 suspend suspend f 

 ┴ ┴ f 

suspend suspend suspend suspend 

 ┴ ┴ ┴ 

┴ ┴ ┴ ┴ 

 

TABLE II 

A ~A 

true false 

false true 

suspend suspend 

┴ ┴ 

 
With regard to Table I we note that both AvB and   A∩B    

are monotonic with regard to the knowledge ordering <5 of 
FIVE.  Other patterns that exist include that   A∩B takes the 
g.l.b. of its values with regard to the truth ordering   <5

*
.     

A∩B takes the g.l.b. of its values with regard to the knowledge 
ordering if we disregard the argument being equal to false and 
lastly, in the knowledge ordering, if one of the arguments is 
false. A∩B always takes on the l.u.b. of the two values. Also, 
AvB takes on the l.u.b. of its values with regard to the truth 
ordering.  

Given a clause of the generic type h ← g│b , by definition  
the guard includes those predicates to the left of the commit 
operator, including the head. By headless guard we mean only 
those predicates to the left of the commit operator on the right 
side of the implication arrow, i.e. the guard without the head 
of the clause.  Consider the following truth table: 

TABLE III 

headless guard (g) body b g│b 

t t      suspend 

f 

t    suspend 

f 

suspend t    suspend 

f 

suspend 

suspend 

f t    suspend 

f 

f 

f 

┴ t     ┴ ┴ 

f f 

┴ suspend suspend 
 

We clarify (truth) Table III by noting if the guard g is false 
and the body b of a clause suspends, g│b is false since it 
cannot be used in a proof that ascertains the truth value of a 
predicate. Also, according to Ueda [27], GHC was designed 
that with the two given rules of suspension (see page 7), 
anything can be done in parallel or even executed in a 
predetermined order provided the latter constraint does not 
change the meaning of the program; thus, we must allow the 
possibility of the truth values that appear in the last line of 
Table III. It is conceivable in theory that the body of a clause 
could get instantiated prior to the instantiation of the guard and 
the commitment and that this is the clause to be used in an 
attempted resolution process. If this takes place, the truth 
value of the body would be suspend. In this case, if a body, b, 
suspends its corresponding guard will never be instantiated; 
thus, the guard of this clause is undefined. Reiterating, if the 
situation is such that the instantiation of a predicate in the 
body forces the instantiation of a variable in the guard prior to 
commitment the truth value of the body would be suspend and 
so, the guard would never get assigned a truth value. We note 
that g│b is monotonic. We now define a conditional truth 
table for the natural interpretation of h ← g│b where g│b is of 
the form g1,…,gk│b1,….,bn (k,n>0). 

 
Table IV 

g│b h h← g│b Annotations 

t t t  

f t t  

suspend t t  

┴ t t  

t f f  

f f t  

suspend f suspend Suspended work on g│b caused 
lack of knowledge of outcome; 

so, h← g│b has value suspend. 

┴ f ┴ Insufficient amount of 

information caused lack of 
knowledge of outcome, so h← 

g│b has value 

t suspend suspend  

f suspend suspend h← g│b takes on suspend to 
reflect some work was done but 

not enough to determine a final 

truth value. 

suspend suspend suspend Work has been done on g│b and 

h, but no value can be 

determined. 

┴ suspend suspend Reflects that work has been 
done but no conclusion has been 

reached. 

t ┴ ┴ It is the truth value of h that is 
responsible for the lack of a 

determined truth value of the 

entire clause. 

f ┴ ┴ 

┴ ┴ ┴ 

 
After examining Table IV, we note the monotonicity with 

regard to knowledge of h←g│b. We also remark on the 
deviation from classical logic, e.g. a→b ≠ a v b as f → ┴ is ┴ 
and ┐f v ┴ = t v ┴ is true. 
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Obviously, if the formula is of the form ╡x A (there exists 
an x such that A is true), its truth value is determined by the 
truth tables and the relationship ╡x A = vxεD A. Similarly, if 
the formula is of the form for- every-x A is true, its truth value 
depends on the tables and the relationship for- every-x A is 
true =∩xεD A. 

Next we will consider the assignment of truth values for 
heads of clauses in a logic program, first with regard to an 
individual processor and then, with respect to several 
processors working concurrently. 

When we write h←g│b we will be using this shorthand 
notation to mean h(x)←g(x)│b(x). If we want to resolve 
clauses of the form h1(x)←g1(x)│b1(x) and h2(y)←g2(y)│h1(y) 
we would of course first have to unify the clauses. Using our 
shorthand notation, we would represent these two clauses by 
h1←g1│b1 and h2←g2│h1

/
. 

Let p1←g1│b1   be the clause whose head predicate p1 is 
attempting to unify with the goal clause via a unifier θ0. Let 
p2← g2│b2 be the clause whose head predicate p2 is attempting 
to unify with g1 via a unifier θ1 to solve g1.  In general, let θn be 
the unifier needed to unify guard gn with head predicate pn+1 to 
solve the guard gn.  The process is nested j+1 levels until the 
guard of the j+1

st
 clause is “true.” 

Definition 3 

We will say p and pi are unifiable if the composition of 
unifiers θj∙….. θ1∙ θ0 does not cause a suspension. The most 
general unifier will be the composition of most general unifers 
that do not cause a suspension. Unifiers that do not cause a 
suspension under composition will be said to be compatible. 

Theorem 1 

The rigorously defined parallel programming languages 
that has been defined on the previous pages correctly reflects 
the operational semantics of GHC. 

Proof: Previous discussion, truth tables I-IV, and 
definitions 2-3. 

Definition 4 

Let P be a logic program defined over a domain D. A 
reserved relation symbol is a symbol that represents a given 
relation on the domain D, i.e. a given mapping from D to the 
appropriate or relevant space of truth values. Φip will be the 
map on non-parallel interpretations by a given processor i, 
given by the following: Assume Φip(V) = W. W is the 
interpretation such that 

(i) if R is a reserved relation symbol, W(R(a)) = 

R(a). 
For a non-reserved relation symbol h, 

(ii) if ╡a program clause in P(D) whose head is h(a) 

and whose guarded body g(a)│ b(a)  maps to 

true under V. then W(h(a)) = true. 

(iii) if all clauses in P(D) of which h(a) is the head, 

have guarded bodies that V maps to false, then 

W(h(a)) = false. 

(iv) If at least one clause in P(D) whose head is ha(a) 

and whose corresponding guarded body V maps 

to suspend while all other clauses of the form 

h(a)← gi(a)│bi(a) in P(D) have guarded bodies    

that V maps to false, 

              W(h(a)) = suspend. 

(v) if all clauses in P(D) whose head is h(a) have 

bodies that V maps to suspend, then W(h(a)) = 

suspend. 

(vi)  in all other cases W(h(a)) = ┴,  i.e. the guarded 

bodies of the clauses in P(D) of which h(a) is the 

head are such that for at least one, V maps the 

guarded body to ┴ and none are mapped to true 

by V, the W(h(a)) = ┴. 
To gain more comfortable with the previous definition, let 

us examine its effect on ground programs. 

1. Since there does not exist any instantiation of 

variables, suspension does not play any role as a truth 

value. 

2. Once the headless guard of a clause is true, the 

interpretation of the clause is equivalent to its 

“unguarded version.” Consider the program 

                                  q← 

       p ←q│r 
In this case, V(r) = ┴, and if Φ(V) = W, then W(p) = ┴. 

This program behaves like p←r. Consider the comparison of 
the following two programs, assuming negation in the body of 
a clause is allowed. 

r← r← 

q← q← 

p←q│r p←q│ ┐r 

 
In the first program, W(p) = t and in the second program, 

W(p) = false. 

1. If a headless guard is false, V(guarded body) = false; 

it is irrelevant which truth value V(body) takes on; 

thus, W(unguarded head) = false. 

2. If V(guard) = ┴, then the truth value of the body is of 

concern. Consider the following three programs: 

 
h←g│b        b← b← 

 h←g│b h←g│┐b 

 

For the first program V(g│b) = ┴ and W(h) = ┴. For the 
second and third programs, W(h) = ┴ and W(h) = f, 
respectively. 

The aforementioned conclusions are based on (Truth) 
Table III. The definition of Φp is satisfactory when one 
processor is trying to interpret the true meaning of a program 
clause or several processors are concurrently determining the 
interpretation of one program clause. With parallel logic 
programming we must account for more than one 
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interpretation of a clause or a predicate being worked on 
concurrently, as well. 

Definition 5 

Let pi(a) denote the i
th

 interpretation of the instantiated 
predicate p(a). Then the concept of parallel interpretations is 
defined in a binary manner and pi(a) @ pj(a), the interpretation 
based on two, concurrent interpretations is given by Table V. 

Table V    

pi(a)    pj(a) pi(a) @ 
pj(a) 

Annotations 

t

  

t

  

t

  

 

t
  

suspend t
  

One processor is forced to 
suspend but the other 

processor proved the predicate 

true. 

t f ┬ Overdefined- possibly by 

hardware malfunction; this is 

the only occurrence of ┬. 

t ┴ t One processor proved the 
predicate true; the other one 

may not even have examined 

pj(a). 

f suspend f The assumption is that one 

processor chose the wrong 

clauses to try to unify and so 
suspend; the other processor 

proved the other predicate 

false based on the program. 

f f f  

f ┴ f (Same as other case). One 

processor did not deal with the 

truth value of  pj(a) and the 
other got false as a value. 

suspend suspend suspend  

suspend ┴ suspend Some work was done; cannot 

do more work on one 
processor and other processor 

did not work with the 

predicate. 

 

The commutative and associative closure of @ are 
obvious. As we previously mentioned the set FIVE with its 
ordering is a complete lattice (See Figure 1). An interpretation 
is a map from atomic formulae into the above set. 
Interpretations with regard to an individual processor are given 
the point-wise ordering, and any order-preserving map has a 
least fixed point (lfp) and a greatest fixed point (gfp). 

Definition 6 

Let Φ denote a parallel-system operator on interpretations 
based on the maps on the interpretations from the n individual 
processors with @ defined between operators pointwise. 

Lemma 1 

Φ is independent of the order of the maps on the individual 
interpretations upon which Φ is based. 

Proof: Referring to Table IV we see the values in the range 
of the @ operation depends merely on the truth values taken 
on by the operands under consideration and are order 
independent. 

Interpretations on the system are given a pointwise 
ordering (i.e. V1 < V2 iff 

V1 (a) < V2 (a) with respect to the lattice FIVE for all atoms 
a) and so, any order-preserving map on parallel interpretations 
will have a least fixed point. The truth values determined by 
the lfp of Φp, , an operator on a five-valued parallel 
interpretation supplies us with the truth valued determined by 
the program. 

In general, a parallel interpretation is an interpretation that 
is achieved by parallel evaluation of sequential interpretations. 
Every sequential interpretation can be considered as (the 
limiting case of) a parallel interpretation.  We now proceed to 
show the relationship between the parallel interpretations 
determined by elements in the range of  Φp  and the sequential 
interpretations determined by the elements in the range of  Φip, 
i=1,…n. 

Definition 7 

For processor i, we define the following family of maps on 
interpretations with regard to program P. Φip  is as defined in 
Definition 4. 

(1) Φip
0
 assigns corresponding truth values to reserved 

relation symbols and given relations; on unreserved 

relations symbols it is ┴. 

(2) Φip
α+1 

≡  Φip (Φip
α
) 

(3) For a limit ordinal λ, Φip
λ
 ≡ sup { Φip

α
│α < λ} 

Definition 8 

Let Φip be as in Definition 4. Let X be an interpretation of 
a program P upon which Φip is defined. The following are 
parallel-system interpretations: 

Φp
0
(X) =X 

Φp
1
(X) = Φ 1p

1
(X)@ Φ 2p

1
(X)….@ Φ np

1
(X) 

Φ p
α+1

(X) = Φ p(Φp
α
(X)) 

Φ p
λ
(X) = lub {Φp

β
(X)│β < λ} 

 
The following shows Φ p

α
(X) is well defined. 

Lemma 2 

Let μ be any function mapping {1,2,…n} to {0,1} such 
that lub μ(i) = 1.  

Then Φ p
1
(X) = @i Φ i

μ(i)
(X). 

Proof: Φ p
1
(X) is a parallel-system interpretation based on 

the lub of interpretations implied by sequential interpretations. 

Lemma 3: 

Φ p
α
(X) = @i Φ i

μ(i)
(X) where μ is any mapping from 

{1,2…n} to {0,1,2…α} such that lubi (i) = α, α any ordinal. 

Proof: From lemma 1 we see that Φ p
α
(X) is a unique 

interpretation for α a successor ordinal; thus, Φ p
λ
(X) is well 

defined for λ a limit ordinal. 

Lemma 4: 

Let Φp = @Φip be the map from 5-valued parallel 
interpretations into 5-valued parallel interpretations as defined 
by Definition 8. Then 
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(1) Φp (@ Φip
λi
(X)) i = 1

n
 = (2) (@ Φip

λi +1
(X)) i = 1

n
 = (3) 

@[Φp
 
(Φip

λi
(X))] i = 1

n      

Proof: (1) ↔ (2) 

(2) is the n-parallel interpretation Φ p
α
(X) where α = lubi (λi 

+1). (1) is the interpretation one gets from Φ operating on  Φ 
λ 

(X),   λ = lubi λi which by definition =  Φ 
λ+1 

(X) where 

λ = lubi λi and so is equal to (2). 

(2) ↔ (3) 

(3) is the resulting interpretation from Φ p acting on each 
sequential interpretation Φip

λi
(X) as the limiting case of a 

parallel interpretation, i.e. Φip
λi
(X) = Φip

λi
(X) @ Φjp

0
(X) ( for 

all j≠i). When we perform the @ operation we arrive at the 
parallel interpretation Φp

α
(X) where α = lubi  (λi +1). 

IV. CONCLUSION 

We contend that the approach of defining the semantics of 
parallel logic programs that we have presented here has a 
strong relationship with the theory of powerdomains based on 
the topology established by Plotkin [24].  Additional future 
work includes an extension of the results of this paper to other 
concurrent logic programming language and their respective 
semantics [15]. 
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